ABSODEX General Catalog

There is a reason why people choose us.

CKD Corporation

CKD's ABSODEX Lineup

can be used for any application

Magnificent High Speed Operation

AX2000T Series

Superb for Assembly/Conveyance/Index tables

Great for miniaturizing equipment
AX6000M Series

AX4000T Series

All actuators are absolute types

3 user friendly features of ABSODEX

Flexible Operation

With an abundant programming function - realize the operation that you want.

Indexing

Oscillations

Reduce Workload and Save Space

A simple design with 4 standard useful features.

High Reliability and Maintenance Free

No more damaged or worn gears from a gearless design.

Eventual gear damage and wear

No worries Gearless structure

Compatibility

Freely combine drivers and actuators

Great Usability!

\author{

- No backup batteries needed
 - Freely combine drivers and actuators
}

Convenient functions

Various functions for your usage!

- Segmented position output function

Use IoT on your equipment!

- Monitor function (TS/TH/XS wiresaving serial communication)
- Network Operation mode (XS wiresaving serial communication)

Operation made easier The AxTools is here to help you from operation settings to adjustments.

From experts to novices, the AX Tools is user friendly
Intuitive operation with a simple and easy to use interface.
Freeware

Desired conditions can be instantly implemented.

In equal segmental programming, only the number of partitions and travel times need to be input.

Industry's 1st! Equipped with an AI that supports adjustments

Operation examples

Electronic Parts Inspection

Operate the AX with multiple machines and achieve high tact

Laser Labeling of Workpieces

Laser marking is done at constant increments.

Laser Labeling of Workpieces

Laser marking is done at constant increments.

Conveyor of Electronic Substrate

Rotate electronic substrates by 90°

Pick and Place

Work is conveyed using an equipped parallel displacement mechanism.

Assembly, Inspection Machines

Conduct setup changes without time loss

Mass Customization
Compatible with
Manufacturing

Compact and easy to use

 AK6000M Series
Industry's smallest and lightest!

* Market survey Oct. 2017

Mass 1.2 kg

, Market survey Oct. 2017

Move one grade higher - with Positioning AK7000K series

Parallel I/O NPN
CC-Link Deviceı'et

Equipped with the industry's highest level high resolution encoder

Realized [High Accuracy \times High Response] Positioning

In addition to precision positioning, greatly improved stability in response time and constant speeds

* The above is not a guranteed value, but a reference value. Depending on the load conditions, etc., the value may vary.Positioning of miniature work

Compatible with a Wide range of Needs AK10007/AK20007/AM4000T series

AK2000T

AX4000T

AK1000T Series

5 sizes lined up from 22 to $210 \mathrm{~N} \cdot \mathrm{~m}$

- Improved indexing accuracy and deflection of shaft/surface, allowing for precise positioning

Most suited for
Precision measurements Inspection machines Assembly machines

AK2000T Series

3 sizes lined up from 6 to $18 \mathrm{~N} \cdot \mathrm{~m}$High speed operation, compact design
AX4000T Series

8 sizes lined up from 9 to $1000 \mathrm{~N} \cdot \mathrm{~m}$Wide selection, supporting large inertial loads

Most suited for

Pick and Place Turn tables Inspection machinesAssembly machines

AK9000TS/TH series

Safety Standards

Contributes to safety standards certification (Safe Torque Off function).

International Standards

Compatible with UL/cUL (N.A. standards), CE(European standards)
${ }^{c} \mathrm{TH}_{u s}$
(10)u"w

Support for domestic and international networks

Ideal for loT connection of devices!

- Highly efficient monitor function!

The current status of ABSODEX can be monitored using the highly efficient monitor function, which provides the current position, velocity, electronic thermal value, and alarms.

- Monitor function also available for preventive maintenance!
-Torque load factor Enables monitoring of the current torque load factor.
-Acceleration Enables monitoring of the current acceleration.
- Network operation mode (Direct value mode) added!

The network operation mode enables flexible positioning as desired from the host controller.
CC-Link
PROFIBUS
CC-Link is a registered trademark of Mitsubishi Electric Corporation.
DeviceNet ${ }^{\text {TM }}$
EtherCAT® PROFIBUS is a trademark of PROFIBUS User Organization. EtherCAT® is a patented technology, licensed by Beckhoff Automation GmbH in Germany.
EtherNet/IP ${ }^{\text {TM }}$ EtherNet/IP ${ }^{\text {TM }}$ is a registered trademark of ODVA.

System configuration

- Basic setting items

1. Input a program from a PC or the dialog terminal.
2. Set necessary parameters in the same way.
3. Set the gain appropriately.

- Basic driving method

1. Select a program to execute from PLC.
2. Supply a start signal from PLC.
3. After indexing is started, the driver outputs a positioning completion signal.

*1 Safety features (TB1) of AX7000X are not compliant with the certification for safety standards.
To comply with the CE marking, the parts shown below or overcurrent/short circuit protection devices are required. In addition, the driver must be installed within the switchboard. For details on the selection, installation and wiring methods of these devices, refer to the instruction manual or technical data (ABSODEX AX Series TS/TH type or XS type technical data).

*3 | Part name | Compatible product(s) | Model No. | Manufacturer |
| :---: | :---: | :---: | :---: |
| Noise filter | Three-phase/single-phase 200 to 230 VAC | 3 3SUP-EF10-ER-6 | Okaya Electric Industries Co., Ltd. |
| | Single phase 100 to 115 VAC | NF2015A-OD | Soshin Electric Co., Ltd. |
| Ferrite core | Common | RC5060ZZ | Soshin Electric Co., Ltd. |
| Surge protector | Common | R/A/V-781BXZ-4 | Okaya Electric Industries Co., Ltd. |
| FG Clamp *2 | Common | FGC-5,FGC-8 | Kitagawa Industries Co.,Ltd. |

*2) The FG clamp is used for grounding the shield of the motor cable or resolver cable (encoder cable).
*3) Commercially available from CKD. Refer to the ABSODEX related parts model No. table (page 63).
Configuration (when selecting the set model No.)

	Name	Quantity
	Actuator body	1
	Driver (with controller)	1
	Motor cable, resolver cable (encoder cable)	1 each

Note) For the notes on the connection method, make sure to read the
instruction manual (technical data).
Note) For details, refer to the accessories supplied with the driver on
page 57 (for AX9000TS/AX9000TH) or page 19 (for AX9000XS).

Accessories: I/O connector, connector for power supply, connector for motor cable

Programming tool

- Dialog terminal "AX0180" is available.
- Start support tool "AX Tools" is available.

ABSODEX programs are created, parameters set, and operation commands, etc., issued from the PC. The created programs can be saved.
The PC communication cable (model No.: AX-RS232C$9 P$) is required.

Note 1) The PC communication cable is designed specifically for ABSODEX. You cannot use a commercially available cable as it is. If you do, the driver or PC may be damaged.
Note 2) Connect the dialog terminal and PC when adjusting only. For normal operation, remove the PC communication cable from CN1.
Note 3) When the PC recovers from the sleep mode, the USB-serial conversion cable may not be recognized, leading to communication errors.
Note 4) Download the latest version of the starting adjustment support tool "AX Tools" from our website.

System configuration

- Basic setting items

1. Input a program from a PC.
2. Set necessary parameters.
3. Set the gain appropriately.

Basic driving method

1. Select a program to execute from PLC.
2. Supply a start signal from PLC.
3. After driving is started, the driver outputs a positioning completion signal.

Configuration (when selecting the set model No.)

Name	Quantity
Actuator body	1
Driver (with controller)	1
Motor cable, resolver cable	1 each

Accessories: I/O connector, connector for power supply, open tool for power supply connector
Note) For details, refer to the accessories supplied with the driver in page 7.
Note) The connectors for motor cable come with the motor cable.
Note) For the notes on the connection method, make sure to read the instruction manual (technical data)

To comply with the CE marking, the parts shown in the following table are required.
For details on the installation and wiring method, refer to the instruction manual or technical data (ABSODEX MU type technical data).

Parts	Model No.	Manufacturer
Noise filter	NF2015A-OD Note 1)	Soshin Electric Co., Ltd.
Surge protector	R/A/V-781BXZ-4 R/A/V-781BWZ-4 RSPD-250-Q4 RSPD-250-U4	Okaya Electric
	FGC-5, FGC-8	Industries Co., Ltd.
	ZCAT2035-0903A	TDK

Note 1) With 250 VAC. Also available with 24 VDC power supply.

Programming tool

- Start support tool "AX Tools" is available.
(Windows version, free)
ABSODEX programs are created, parameters set, and operation commands, etc., issued from the PC. The created program can be saved.
The PC communication cable (model No.: AX-RS232C$9 P)$ is required.
Note 1) The PC communication cable is designed specifically for ABSODEX. You cannot use a commercially available cable as it is. If you do, the driver or PC may be damaged.
Note 2) Connect the PC communication cable when adjusting only.
For normal operation, remove the PC communication cable from CN1.

Note 3) When the PC recovers from the sleep mode, the USB-serial conversion cable may not be recognized, leading to communication errors.
Note 4) Download the latest version of the starting adjustment support tool "AX Tools" from our website.

ABSODEX system table

	Tomemem									
A Ansme				${ }_{18}{ }_{20}$	${ }_{21} 45{ }_{55}$	${ }_{580}{ }_{50}$	${ }^{10} 120$		\%00	\%ooo
					20					
					EE					
							Eme			
			B							
		\bigcirc			Pex					
						E		8	-	e

								Selection guide Safety preca	utions	$\begin{aligned} & \ldots . \\ & \ldots 5 \\ & \ldots \end{aligned}$
Indexing accuracy	Repeat accuracy	Surface runout	$\begin{array}{\|c\|} \text { Shaft } \\ \text { runout } \end{array}$	Driver series name				Features	Applications	Page
(sec)	(sec)	(mm)	(mm)							
± 90	± 10	0.03	0.05					- Small diameter ($\varphi 80$)	$\begin{aligned} & \text { P\& \& } \\ & \text { Sub table } \end{aligned}$	1
± 30	± 2	0.03	0.03					- High precision (high resolution, high repeatability)	- Inspection machine Turntable	11
± 15	± 5	0.01	0.01							
± 15	± 5	0.01	0.01							
± 30	± 5	0.03	0.03					- High-speed rotation (300 rpm) - Compact with small diameter - Large hollow diameter ($\varphi 30$)	P\&P Turntable Assembling machine	29
± 30	± 5	0.03	0.05							33
± 30	± 5	0.03	$\left\lvert\, \begin{gathered} 0.05 \\ 0 \end{gathered}\right.$							41

Characteristics of the driver

Drivers can be commonly used for supported actuators.
The controller function allows you to use an NC program to desirably set the actuator's rotation angle, movement time and timer, etc.
M code output, encoder output, etc. are also available to connect to an external PLC, motion controller, etc.

ABSODEX

AX6000M Series

Minimum size of 80 mm diameter
Compatible function allows free combination of driver, actuator, and cable

- Max. torque: 1.2, $3 \mathrm{~N} \cdot \mathrm{~m}$

Supported driver: MU driver

Actuator specifications

Descriptions	AX6001M	AX6003M
Max. output torque $\quad \mathrm{N} \cdot \mathrm{m}$	1.2	3.0
Continuous output torque $\quad \mathrm{N} \cdot \mathrm{m}$	0.4	1.0
Max. rotation speed $\quad \mathrm{rpm}$	240 (*1)	
Allowable axial load N	600	
Allowable moment load $\quad \mathrm{N} \cdot \mathrm{m}$	5	
Output shaft moment of inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.00034	0.00059
Allowable moment of load inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.034	0.059
Index accuracy (*3) sec	± 90	
Repeatability (*3) sec	± 10	
Output shaft friction torque $\mathrm{N} \cdot \mathrm{m}$	0.13	0.22
Resolution P/rev	540672	
Motor insulation class	Class A	
Motor withstand voltage	550 VAC 1 minute	
Motor insulation resistance	$10 \mathrm{M} \Omega$ or more 500 VDC	
Operating ambient temperature	0 to $40^{\circ} \mathrm{C}$	
Operating ambient humidity	20 to 85% RH, no condensation	
Storage ambient temperature	-10 to $65^{\circ} \mathrm{C}$	
Storage ambient humidity	20 to 90\% RH, no condensation	
Atmosphere	No corrosive gas, explosive gas, or dust	
Weight kg	1.2 (1.4) *2	1.8 (2.0) *2
Output shaft runout (*3) mm	0.03	
Output shaft surface runout (*3) mm	0.05	
Degree of protection	IP20	

*1: Use at a speed of 80 rpm or less during continuous rotation operation.
*2: The values in () are the actuator weight with the mounting base option.
*3: Refer to the "Glossary" on page 64 for index accuracy, repeatability, output shaft runout and output shaft surface runout.

Speed/maximum torque characteristics

AX6001M
(rpm)

* The graph shows the characteristics when 24 VDC (ambient temperature: $25^{\circ} \mathrm{C}$) is connected.

AX6003M
(rpm)

($\mathrm{N} \cdot \mathrm{m}$)

* The graph shows the characteristics when 24 VDC (ambient temperature: $25^{\circ} \mathrm{C}$) is connected.

(Fig. b)
$M(N \cdot m)=F(N) \times(L+0.02)(m)$
M:Moment load
F: Load
L: Distance from the output shaft flange surface

Always read the safety precautions on pages 73 to 78 before use.

How to order

How to order

- Set model No. (actuator, driver, cable)

Body model No. Option model No.

*2: C) When the "BS" option with the mounting base is selected, the positioning pin hole on the bottom is not available. The surface is treated with electroless nickel plating.
*3: Positioning pin holes may not be surface treated.
*4: The surface part is treated with electroless nickel plating. The fixed section is made of stainless steel.

Actuator body discrete model No.

Driver discrete model No.

Cable discrete model No.

- Motor cable

(DCable length
(Note: "DMO4" when cable)

Dimensions

AX6001M

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

Interface specifications: parallel I/O (NPN)

Features
Ultra-compact/lighter weight (resin body adopted)

- Easy wiring with connector

General specifications

Descriptions		Model
		MU driver AX9000MU
$\begin{aligned} & \text { Power supply } \\ & \text { voltage } \end{aligned}$	Main power supply	24 VDC $\pm 10 \%$
	Control power	24 VDC $\pm 10 \%$
Structure		Driver and controller integrated
Operating ambient temperature		0 to $50^{\circ} \mathrm{C}$
Operating ambient humidity		20 to 90\% RH (no condensation)
Storage ambient temperature		-10 to $65^{\circ} \mathrm{C}$
Storage ambient temperature		20 to 90\% RH (no condensation)
Atmosphere		No corrosive gas or dust
Anti-noise		1000 V (P-P), pulse width $1 \mu \mathrm{sec}$, rising, falling time 1 nsec impulse noise test, induction noise (capacitive coupling)
Vibration resistance		$4.9 \mathrm{~m} / \mathrm{s}^{2}$
Weight		Approx. 0.5 kg
Degree of protection		IP2X

Power capacity

Actuator model No.	Driver model No.	Rated input current	Max. input current
AX6001M, AX6003M	AX9000MU	3.3 A	10 A

Always read the safety precautions on pages 73 to 78 before use.
Custom order products are CE and RoHS non-compliant. Contact CKD as needed.

Parallel I/O (NPN)

CN3 Input signal

Pin No.	Signal name	Logic	Determination
1 to 2	External power supply input $+24 \mathrm{~V} \pm 10 \%$		
3 to 4	External power supply input GND		
5	Program No. selection input (Bit 0)	Positive	Level
6	Program No. selection input (Bit 1)	Positive	Level
7	Program No. selection input (Bit 2)	Positive	Level
8	Program No. selection input (Bit 3)	Positive	Level
9	Program No. setting 2nd digit input// Program No. selection input (Bit 4)	Positive	Edge Level
10	Program No. setting 1st digit input// Program No. selection input (Bit 5)	Positive	Edge Level
11	Reset input	Positive	Edge
12	Origin return directive input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input/Program stop input	Positive	Level Edge
15	Continuous rotation stop input	Positive	Edge
16	Answer input/Position deviation counter reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

CN3 pulse train input signal

Pin No.	Signal name
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase

Input/output circuit specifications

Content	1 circuit current (mA)	Max. points (Circuit)	Max. current (mA)	Max. power consumption (mA)
Input circuit	4	14	56	746
Output circuit	30	18	540	
Brake output (BK+, BK-)	75	2	150	

* The maximum simultaneous output points of the output circuit are 14 points out of 18 points.

CN3 Output signal

Pin No.	Signal name	Logic
33	M code output (Bit 0)	Positive
34	M code output (Bit 1)	Positive
35	M code output (Bit 2)	Positive
36	M code output (Bit 3)	Positive
37	M code output (Bit 4)	Positive
38	M code output (Bit 5)	Positive
39	M code output (Bit 6)	Positive
40	M code output (Bit 7)	Positive
41	Imposition output	Positive
42	Positioning completion output	Positive
43	Start input wait output	Positive
44	Alarm output 1	Load
45	Alarm output 2	Load
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/Servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (Incremental)

Pin No.	Signal name
23	A phase (Line driver output)
24	-A phase (Line driver output)
25	B phase (Line driver output)
26	-B phase (Line driver output)
27	Z phase (Line driver output)
28	-Z phase (Line driver output)

CN3 input/output circuit specifications

- Input circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$ Rated current 4 mA (24 VDC)

- Output circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$ Rated current 30 mA (MAX)

- Pulse train input circuit

Maximum input frequency Line driver 1 Mpps Open collector 250 Kpps
Encoder output circuit

Output format: Line driver Line driver: DS26C31

MU driver

Parallel I/O (PNP)

CN3 Input signal

Pin No.	Signal name	Logic	Determination
1 to 2	External power supply input GND		
3 to 4	External power supply input $+24 \mathrm{~V} \pm 10 \%$		
5	Program No. selection input (Bit 0)	Positive	Level
6	Program No. selection input (Bit 1)	Positive	Level
7	Program No. selection input (Bit 2)	Positive	Level
8	Program No. selection input (Bit 3)	Positive	Level
9	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
10	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
11	Reset input	Positive	Edge
12	Origin return directive input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input/Program stop input	Positive	Level Edge
15	Continuous rotation stop input	Positive	Edge
16	Answer input/Position deviation counter reset input	Positive	Edge
17	Emergency stop input	Load	Level
18	Brake release input	Positive	Level

CN3 pulse train input signal

Pin No.	Signal name
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/ DOWN/ B phase
22	-DIR/-DOWN/-B phase

Input/output circuit specifications

Content	1 circuit current (mA)	Max. points (Circuit)	Max. current (mA)	Max. power consumption (mA)
Input circuit	4	14	56	746
Output circuit	30	18	540	
Brake output (BK+, BK-)	75	2	150	

* The maximum simultaneous output points of the output circuit are 14 points out of 18 points.

CN3 Output signal

Pin No.	Signal name	Logic
33	M code output (Bit 0)	Positive
34	M code output (Bit 1)	Positive
35	M code output (Bit 2)	Positive
36	M code output (Bit 3)	Positive
37	M code output (Bit 4)	Positive
38	M code output (Bit 5)	Positive
39	M code output (Bit 6)	Positive
40	M code output (Bit 7)	Positive
41	Imposition output	Positive
42	Positioning completion output	Positive
43	Start input wait output	Positive
44	Alarm output 1	Load
45	Alarm output 2	Load
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/Servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (Incremental)

Pin No.	Signal name
23	A phase (Line driver output)
24	-A phase (Line driver output)
25	B phase (Line driver output)
26	-B phase (Line driver output)
27	Z phase (Line driver output)
28	-Z phase (Line driver output)

CN3 input/output circuit specifications

- Input circuit

- Output circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$ Rated current 50 mA (MAX)

- Pulse train input circuit

- Encoder output circuit

Output format: Line driver
Line driver: DS26C31

Accessories supplied with the driver

Model No.	Specifications	CN3 Connector	CN4 Connector
AX9000MU-U0	Parallel I/O (NPN)	10150-3000PE (Plug) 10350-52A0-008 (Shell)	Power supply connector 04JFAT-SBXGF-I Open tool S-FAT-OT Sumitomo 3M Ltd.
AX9000MU-U1	Parallel I/O (PNP)		S.T. Mfg Co., Ltd.

For additional orders of parts, refer to the parts model No. table.

- The ABSODEX driver does not have a dust-proof/waterproof structure. To prevent dust, water, oil or other substances from entering the driver, provide protection according to the working environment.Install the ABSODEX driver away from other devices, walls or other structures by 50 mm or more from both top and bottom and 30 mm or more from sides. When heat is generated from other drivers or devices, check that the ambient temperature does not exceed $50^{\circ} \mathrm{C}$.
Panel Details
Parallel I/O (NPN)

Cable Specifications

*1) $\square \square$ indicates the cable length.

Safety precautions

- For uses in which the cable is repeatedly bent, fix the cable sheath part near the connector of the actuator body.
- The lead-out cable of the actuator section is not movable. Make sure to fix the cable in the connector section to prevent the cable from moving. Do not pull the lead-out cable to lift the unit or apply excessive force to the cable. Otherwise, malfunction, an alarm, damage of the connector part, or disconnection may result.
- When connecting the cable, fully insert the connector. Also, tighten the connector mounting screws and fix screws securely.
- Do not modify the cable, including disconnection or extension. Such modification may cause failure or malfunction.
- For the cable length L, refer to the cable length shown in the How to order.

ABSODEX

AX7000X Series

High-end model equipped with high-resolution encoder Compatible function allows free combination of driver, actuator, and cable

- Max. torque: 22/45 N•m

Supported driver: XS driver

Actuator specifications

Descriptions	AX7022X	AX7045X
Max. output torque $\quad \mathrm{N} \cdot \mathrm{m}$	22	45
Continuous output torque $\quad \mathrm{N} \cdot \mathrm{m}$	7	15
Max. rotation speed rpm	240 (*1)	
Allowable axial load N	400	
Allowable moment load $\quad \mathrm{N} \cdot \mathrm{m}$	20	
Output shaft moment of inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.0182	0.0254
Allowable moment of load inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.60	0.90
Index accuracy (*3) sec	± 30	
Repeatability (*3) sec	± 2	
Output shaft friction torque $\quad \mathrm{N} \cdot \mathrm{m}$	2.5	
Resolution P/rev	4,194,304	
Motor insulation class	Class F	
Motor withstand voltage	1,500 VAC 1 min	
Motor insulation resistance	$10 \mathrm{M} \Omega$ or more 500 VDC	
Operating ambient temperature	0 to $40^{\circ} \mathrm{C}$	
Operating ambient humidity	20 to 85% RH, no condensation	
Storage ambient temperature	-20 to $80^{\circ} \mathrm{C}$	
Storage ambient humidity	20 to $90 \% \mathrm{RH}$, no condensation	
Atmosphere	No corrosive gas, explosive gas, or dust	
Weight kg	10.0 (12.9) *2	13.2 (16.1) *2
Output shaft runout (*3) mm	0.03	
Output shaft surface runout (*3) mm	0.03	
Degree of protection	IP20	

*1: Use at a speed of 80 rpm or less during continuous rotation operation.
*2: The values in () are the actuator weight with the mounting base option.
*3: Refer to the "Glossary" on page 64 for index accuracy, repeatability, output shaft runout and output shaft surface runout.

Speed/maximum torque characteristics

- AX7022X
(rpm)

* The graph shows the characteristics of three-phase 200 VAC.
(Note) Moment load (simple formula)

$M(N \cdot m)=F(N) \times L(m)$
M:Moment load
F: Load
L: Distance from the output shaft center (Fig. a)

AX7045X
(rpm)

* The graph shows the characteristics of three-phase 200 VAC.

Always read the safety precautions on pages 73 to 78 before use.

How to order

- Set model No. (actuator, driver, cable)
Precautions for model No. selection
*1: Select the driver according to the compatibility table below.
Driver power voltage compatibility table

	Drivers Type	XS driver	
	Three-phase/ single-phase 200 Model 230 VAC	Single-phase 100 to 115 VAC	
AX7022X	Blank	J 1	
AX7045X	Blank	J 1	

*2: Cable is a movable cable.
Refer to page 21 for dimensions of the cable.
Body lead-out cable is not a movable cable.
*3: CWhen the "BS" option with the mounting base is selected, the positioning pin hole on the bottom is not available.
The surface is treated with electroless nickel plating.
*4: Positioning pin holes may not be surface treated.
*5: The body surface of AX7022X and AX7045X is treated with electroless nickel plating.

- Actuator body discrete model No.

Driver discrete model No. - 200 to 230 VAC

AX9000XS	- U0
-100 to 115 VAC	
AX9000XS-J1-U0	

Cable discrete model No.

- Motor cable

AX-CBLM6-DM04

- Encoder cable

AX-CBLR10-DM04
(DCable length
(Note: "DM04" when cable)

[^0]
Dimensions

AX7022X

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

Dimensions

- AX7045X

Features
Power supply is divided into main power supply and
control power supply
Smaller/lighter weight (resin body adopted)
7-segment LED 2-digit display
Compatible with encoder output (parallel I/O only)
Serial communication options available
Driving conditions enabled to be set or directed by the
host controller (CC-Link and DeviceNet only)

General specifications

Descriptions		Model
		XS driver AX9000XS
Power supply voltage	Main power supply	Three phase, single phase 200 VAC $\pm 10 \%$ to 230 VAC $\pm 10 \%$ 100 VAC $\pm 10 \%$ to 115 VAC $\pm 10 \%$ (J1 Option) (*1)
	Control power	$\begin{aligned} & 200 \text { VAC } \pm 10 \% \text { to } 230 \text { VAC } \pm 10 \% \\ & 100 \text { VAC } \pm 10 \% \text { to } 115 \text { VAC } \pm 10 \% \text { (J1 Option) (*1) } \end{aligned}$
Power frequency		$50 / 60 \mathrm{~Hz}$
Rated input current		200 VAC: 1.8 A 100 VAC: 2.4 A
Rated output current		1.9 A
Structure		Driver and controller integrated (open type)
Operating ambient temperature		0 to $50^{\circ} \mathrm{C}$
Operating ambient humidity		20 to 90\% RH (no condensation)
Storage ambient temperature		-20 to $65^{\circ} \mathrm{C}$
Storage ambient humidity		20 to 90\% RH (no condensation)
Atmosphere		No corrosive gas or dust
Anti-noise		$1,000 \mathrm{~V}(\mathrm{P}-\mathrm{P})$, pulse width $1 \mu \mathrm{sec}$, rising 1 nsec impulse noise test, induction noise (capacitive coupling)
Vibration resistance		$4.9 \mathrm{~m} / \mathrm{s}^{2}$
Weight		Approx. 1.6 kg
Degree of protection		IP2X (excluding CN4 and CN5)

*1) If a 200 to 230 VAC power supply is connected by mistake when using power voltage 100 to 115 VAC specifications (-J1 option), the driver internal circuit will be damaged.
*2) If the main power is cut off while the actuator is rotating, the rotation may continue due to inertia.
*3) After the main power supply is cut OFF, the motor may rotate by the residual voltage of the driver.

How to order

- 200 to 230 VAC

Interface specifications
U0: Parallel I/O(NPN)
U2: CC-Link
U4: DeviceNet
Performance specifications

Descriptions	Content
No. of control axes	1 axis, 4,194,304 pulses/1 rotation
Angle setting unit	${ }^{\circ}$ (degree), pulse, indexing No.
Angle min. setting unit	$0.001^{\circ}, 1$ pulse
Speed setting unit	sec, rpm
Speed setting range	0.01 to $100 \mathrm{sec} / 0.11$ to 240 rpm
Equal divisions	1 to 255
Max. command value	8-digit numeric input $\pm 99,999,999$
Timer	0.01 to 99.99 sec
Programming language	NC
Programming method	Set data through RS232C port with a PC or other terminal.
Operation mode	Auto, MDI, jog, single block, servo OFF, pulse train input mode Network operation mode
Coordinates	Absolute, incremental
Acceleration curve	[5 types] Modified Sine (MS), Modified Constant Velocity (MC/ MC2), Modified Trapezoid (MT), Trapecloid (TR)
Status display	LED display $\begin{gathered} \text { CHARGE = Main power supply } \\ \text { POWER = Control power } \end{gathered}$
Operation display	Display with 7-segment LED (2 digits)
Communication interface	RS-232C compliant
I/O signal	Refer to interface specification pages.
Program capacity	Approx. 6,000 characters (256)
Electronic thermal	Overheating protection for actuator

Breaker capacity

Parallel I／O（NPN）

CN3 Input signal

Pin No．	Signal name	Logic	Determination
1 to 2	External power supply input $+24 \mathrm{~V} \pm 10 \%$		
3 to 4	External power supply input GND		
5	Program No．selection input（Bit 0）	Positive	Level
6	Program No．selection input（Bit 1）	Positive	Level
7	Program No．selection input（Bit 2）	Positive	Level
8	Program No．selection input（Bit 3）	Positive	Level
9	Program No．setting 2nd digit input／ Program No．selection input（Bit 4）	Positive	Edge Level
10	Program No．setting 1st digit input／／ Program No．selection input（Bit 5）	Positive	Edge Level
11	Reset input	Positive	Edge
12	Origin return directive input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input／ Program stop input	Positive	Level Edge
15	Ready return／Continuous rotation stop input	Positive	Edge
16	Answer input／Position deviation counter reset input	Positive	Edge
17	Emergency stop input	Load	Level
18	Brake release input	Positive	Level

CN3 pulse train input signal

Pin No．	Signal name
19	PULSE／UP／A phase
20	－PULSE／－UP／－A phase
21	DIR／DOWN／B phase
22	－DIR／－DOWN／－B phase

Input／output circuit specifications

Content	1 circuit current (mA)	Max．points （Circuit）	Max．current (mA)	Max．power consumption (mA)
Input circuit	4	14	56	
Output circuit	50	18	900	1106
Brake output（BK＋，BK－）	75	2	150	

＊The maximum simultaneous output points of the output circuit are 14 points out of 18 points．

CN3 input／output circuit specifications
－Input circuit

－Output circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$
Rated current 50 mA （MAX）

CN3 Output signal

Pin No．	Signal name	Logic
33	M code output（Bit 0）	Positive
34	M code output（Bit 1）	Positive
35	M code output（Bit 2）	Positive
36	M code output（Bit 3）	Positive
37	M code output（Bit 4）	Positive
38	M code output（Bit 5）	Positive
39	M code output（Bit 6）	Positive
40	M code output（Bit 7）	Positive
41	Imposition output	Positive
42	Positioning completion output	Positive
43	Start input wait output	Positive
44	Alarm output 1	Load
45	Alarm output 2	Load
46	Output 1 during indexing／Origin position output	Positive
47	Output 2 during indexing／Servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

CN3 encoder output signal（Incremental）

Pin No．	
23	A phase（Line driver output）
24	－A phase（Line driver output）
25	B phase（Line driver output）
26	－B phase（Line driver output）
27	Z phase（Line driver output）
28	- Z phase（Line driver output）

－Pulse train input circuit

Maximum input frequency
Line driver 1 Mpps
Open collector 250 Kpps

Encoder output circuit

Output format：Line driver
Line driver：DS26C31

[^1]
XS driver

CC-Link

Communication specifications

Descriptions	Specifications
Power supply	5 VDC is supplied from the servo amplifier.
CC-Link version	Ver.1.10
Number of occupied stations (type)	2 stations (Remote device station)
Remote input points	48 point
Remote output points	48 point
Remote register input/output	Input 8 words/Output 8 words
Communication speed	10 M/5 M/2.5 M/625 k/156 kbps (Selected by parameter setting)
Connection cable	CC-Link Ver.1.10 compliant cable (3 core cable with shield)
Transmission format	HDLC compliant
Remote station No.	1 to 63 (Set by a parameter)
Number of connected units	For remote device station only Max. 32 units/2 stations occupied
Monitor function	Present position within 1 rotation (degree, pulse), position deviation, amount, program No., electronic thermal, rotation speed, alarm, parameter, operation mode

I/O signal
PLC $\rightarrow A X$ (Input)

Device No.	Signal name	Logic	Datemination
RYn0	Program No. selection input (Bit 0)	Positive	Level
RYn1	Program No. selection input (Bit 1)	Positive	Level
RYn2	Program No. selection input (Bit 2)	Positive	Level
RYn3	Program No. selection input (Bit 3)	Positive	Level
RYn4	Program No. setting 2nd digit input /Program No. selection input (Bit 4)	Positive	Edge level
RYn5	Program No. setting 1st digit input /Program No. selection input (Bit 5)	Positive	Edge level
RYn6	Reset input	Positive	Edge
RYn7	Origin return directive input	Positive	Edge
RYn8	Start input	Positive	Edge
RYn9	Servo on input /Program stop input	Positive	Level edge
RYnA	Ready return input /Continuous rotation stop input	Positive	Edge
RYnB	Answer input /Position deviation counter reset input	Positive	Edge
RYnC	Emergency stop input	Load	Level
RYnD	Brake release input	Positive	Level
RYnE	Job operation input (CW direction)	Positive	Edge
RYnF	Job operation input (CCW direction)	Positive	Edge
$\mathrm{RY}(\mathrm{n}+1) 0$	Unusable /Travel unit selection input (Bit 0)	Positive	Level
$\mathrm{RY}(\mathrm{n}+1) 1$	Unusable /Travel unit selection input (Bit 1)	Positive	Level
$\mathrm{RY}(\mathrm{n}+1) 2$	Unusable /Travel speed unit selection input	Positive	Level
$\mathrm{RY}(\mathrm{n}+1) 3$	Operation by table, Operation by data input Switching input	Positive	Level
$\begin{array}{\|c\|} \hline R Y(n+1) 4 \\ \text { to } \\ R Y(n+1) F \\ \hline \end{array}$	Unusable		
$\mathrm{RY}(\mathrm{n}+2) 0$	Monitor output execution request	Positive	Level
$\mathrm{RY}(\mathrm{n}+2) 1$	Command code execution request	Positive	Edge
$\begin{gathered} \hline R Y(n+2) 2 \\ \text { to } \\ R Y(n+2) F \\ \hline \end{gathered}$	Unusable		
$\left\lvert\, \begin{gathered} R Y(n+3) 0 \\ t o \\ R Y(n+3) F \end{gathered}\right.$	Unusable		

* n is determined by the setting of the station No.

AX (Output) \rightarrow PLC

Device No.	Signal name	Logic
RXn0	M code output (Bit 0)	Positive
RXn1	M code output (Bit 1)	Positive
RXn2	M code output (Bit 2)	Positive
RXn3	M code output (Bit 3)	Positive
RXn4	M code output (Bit 4)	Positive
RXn5	M code output (Bit 5)	Positive
RXn6	M code output (Bit 6)	Positive
RXn7	M code output (Bit 7)	Positive
RXn8	Imposition output	Positive
RXn9	Positioning completion output	Positive
RXnA	Start input wait output	Positive
RXnB	Alarm output 1	Load
RXnC	Alarm output 2	Load
RXnD	Output 1 during indexing /Origin position output	Positive
RXnE	Output 2 during indexing /Servo state output	Positive
RXnF	Ready output	Positive
$\mathrm{RX}(\mathrm{n}+1) 0$	Segment position strobe output	Positive
$\mathrm{RX}(\mathrm{n}+1) 1$	M code strobe output	Positive
$\left\|\begin{array}{c} R X(n+1) 2 \\ \text { to } \\ R X(n+1) F \end{array}\right\|$	Unusable	
$\mathrm{RX}(\mathrm{n}+2) 0$	Monitoring	Positive
$\mathrm{RX}(\mathrm{n}+2)^{1}$	Command code execution completed	Positive
$\begin{gathered} R X(n+2) 2 \\ \text { to } \\ R X(n+2) F \end{gathered}$	Unusable	\bigcirc
$\begin{array}{\|c\|} \hline R X(n+3) 0 \\ \text { to } \\ R X(n+3) A \end{array}$	Unusable	
$\underset{B}{\operatorname{RX}(n+4)}$	Remote READY	Positive
$\begin{array}{\|c\|} \hline R X(n+3) C \\ \text { to } \\ R X(n+3) F \end{array}$	Unusable	

TB3 Input circuit specifications (Machine stops)

Safety precautions

(Customer-provided)

- Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.).
\square Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.
- For details on the installation of a communication
cable, refer to the CC-Link installation manuals.

DeviceNet

Communication specifications

Descriptions	Specifications
Power supply for communication	11 to 25 VDC
Current consumption of power supply for communication	50 mA or less
Communication protocol	DeviceNet compliant: Remote I/O
Number of occupied nodes	Input 8 bytes/Output 8 bytes
Communication speed	$500 \mathrm{k} / 250 \mathrm{k} / 125 \mathrm{kbps}$ (Selected by parameter setting)
Connection cable	DeviceNet compliant cable (5-wire cable with shield, 2 signal lines, 2 power cables, 1 shield)
Node address	0 to 63 (Set by a parameter)
Number of connected units	Max. 64 units (including the master)
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, alarm, parameter, operation mode

I/O signal

PLC \rightarrow AX (Input)

Byte No.	Signal name	Logic	Datamination
0.0	Program No. selection input (Bit 0)	Positive	Level
0.1	Program No. selection input (Bit 1)	Positive	Level
0.2	Program No. selection input (Bit 2)	Positive	Level
0.3	Program No. selection input (Bit 3)	Positive	Level
0.4	Program No. setting 2nd digit input /Program No. selection input (Bit 4)	Positive	Edge level
0.5	Program No. setting 1st digit input /Program No. selection input (Bit 5)	Positive	Edge level
0.6	Reset input	Positive	Edge
0.7	Origin return directive input	Positive	Edge
1.0	Start input	Positive	Edge
1.1	Servo on input /Program stop input	Positive	Level edge
1.2	Ready return input /Continuous rotation stop input	Positive	Edge
1.3	Answer input /Position deviation counter reset input	Positive	Edge
1.4	Emergency stop input	Load	Level
1.5	Brake release input	Positive	Level
1.6	Job operation input (CW direction)	Positive	Edge
1.7	Job operation input (CCW direction)	Positive	Edge
2.0	Parameter No. (Bit 8) /Travel unit selection input (Bit 0)	Positive	Level
2.1	Parameter No. (Bit 9) $/$ Travel unit selection input (Bit 1)	Positive	Level
2.2	Parameter No. (Bit 10) /Travel speed unit selection input	Positive	Level
2.3	Operation by table, Operation by data input Switching input	Positive	Level
$\begin{aligned} & 2.4 \\ & 2.5 \end{aligned}$	Unusable	,	
2.6	Monitor output execution request	Positive	Level
2.7	Command code execution request	Positive	Edge
3.0	Parameter No. (Bit 0) /Unusable	Positive	Level
3.1	Parameter No. (Bit 1) /Unusable	Positive	Level
3.2	Parameter No. (Bit 2) /Unusable	Positive	Level
3.3	Parameter No. (Bit 3) /Unusable	Positive	Level
3.4	Parameter No. (Bit 4) /Unusable	Positive	Level
3.5	Parameter No. (Bit 5) /Unusable	Positive	Level
3.6	Parameter No. (Bit 6) /Unusable	Positive	Level
3.7	Parameter No. (Bit 7) /Unusable	Positive	Level

AX (Output) \rightarrow PLC

Byte No.	Signal name	Logic
0.0	M code output (Bit 0)	Positive
0.1	M code output (Bit 1)	Positive
0.2	M code output (Bit 2)	Positive
0.3	M code output (Bit 3)	Positive
0.4	M code output (Bit 4)	Positive
0.5	M code output (Bit 5)	Positive
0.6	M code output (Bit 6)	Positive
0.7	M code output (Bit 7)	Positive
1.0	Imposition output	Positive
1.1	Positioning completion output	Positive
1.2	Start input wait output	Positive
1.3	Alarm output 1	Load
1.4	Alarm output 2	Load
1.5	Output 1 during indexing /Origin position output	Positive
1.6	Output 2 during indexing /Servo state output	Positive
1.7	Ready output	Positive
2.0	Segment position strobe output	Positive
2.1	M code strobe output	Positive
2.2	Command code execution completed	Positive
2.5	Unusable	
2.6	Monitoring	
20		

communication cable and power cable (motor cable, power supply cable, etc.).
\square Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.
\square For details on the installation of communication cables, refer to the DeviceNet installation manuals.

Safety precautions

Reserve a sufficient distance between the

Dimensions

Installation Dimension

*1) Determine the dimension with extra allowance according to a
 cable you want to use.

A Safety precautions

The ABSODEX driver does not have a dust-proof/waterproof structure.
To prevent dust, water, oil or other substances from entering the driver, provide protection according to the working environment.
Install the ABSODEX driver away from other devices, walls or other structures by 50 mm or more from the top, bottom and sides. When heat is generated from other drivers or devices, check that the ambient temperature does not exceed $50^{\circ} \mathrm{C}$.

Accessories supplied with the driver

Model No.	Specifications	CN3 Connector	Power supply connector (CN4)	Motor cable connector (CN5)
AX9000XS-U0	Parallel I/O(NPN)	$10150-3000 P E$ (Plug) $10350-52 A 0-008 ~(S h e l l) ~$ Sumitomo 3M Ltd.		
AX9000XS-U2	CC-Link	BLZP5.08HC/05/180F AU OR BX Weidmüller	PC4/5-ST-7.62 Phoenix Contact	PC4/3-ST-7.62 Phoenix Contact
AX9000XS-U4	DeviceNet	MSTB2.5/5-STF-5.08AUM Phoenix Contact		

Panel Details

- Parallel I/O (NPN)

DeviceNet

- CC-Link

[^2]
Cable Specifications

Cable dimensions	Product name/model No.	Cable's min. bending radius
	Encoder cable AX-CBLR10-DM \square	60 mm
	Motor cable $\text { AX-CBLM5-DM } \square$	110 mm

*1) $\square \square$ indicates the cable length.

ASafety precautions

Connect the motor cable and driver correctly by checking the mark tube of the cable and the display of the driver.

- For uses in which the cable is repeatedly bent, fix the cable sheath part near the connector of the actuator body.
- The lead-out cable of the actuator section is not movable. Make sure to fix the cable in the connector section to prevent the cable from moving. Do not pull the lead-out cable to lift the unit or apply excessive force to the cable. If you do, malfunction, an alarm, damage of the connector part, or disconnection may result.
- When connecting the cable, fully insert the connector. Also, tighten the connector mounting screws and fixing screws securely.
- Do not disconnect, extend, or make other modifications to the cable. Such modifications may cause failure or malfunction.
- For the cable length L, refer to the cable length shown in the How to order.

ABSODEX

AX1000T Series

High accuracy specifications (index accuracy, output shaft runout, etc.) Compatible function allows free combination of driver, actuator, and cable

- Max. torque: 22/45/75/150/210 N•m - Supported driver: TS/TH driver c께

Actuator specifications

Descriptions		AX1022T	AX1045T	AX1075T	AX1150T	AX1210T
Max. output torque	$\mathrm{N} \cdot \mathrm{m}$	22	45	75	150	210
Continuous output torque	$\mathrm{N} \cdot \mathrm{m}$	7	15	25	50	70
Max. rotation speed	rpm	240 (*1)		140 (*1)	120 (*1)	
Allowable axial load	N	600		2200		
Allowable moment load	$\mathrm{N} \cdot \mathrm{m}$	19	38	70	140	170
Output shaft moment of inertia	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.00505	0.00790	0.03660	0.05820	0.09280
Allowable moment of load inertia	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.6	0.9	4.0	6.0	10.0
Index accuracy (*3)	sec	± 15				
Repeatability (*3)	sec	± 5				
Output shaft friction torque	$N \cdot m$	2.0		8.0		
Resolution	P/rev	540672				
Motor insulation class		Class F				
Motor withstand voltage		1500 VAC 1 min				
Motor insulation resistance		$10 \mathrm{M} \Omega$ or more 500 VDC				
Operating ambient temperature		0 to $45^{\circ} \mathrm{C}\left(0\right.$ to $40^{\circ} \mathrm{C}$: *4)				
Operating ambient humidity		20 to 85% RH, no condensation				
Storage ambient temperature		-20 to $80^{\circ} \mathrm{C}$				
Storage ambient humidity		20 to $90 \% \mathrm{RH}$, no condensation				
Atmosphere		No corrosive gas, explosive gas, or dust				
Weight	kg	8.9 (10.8) *2	12.0 (13.9) *2	23.0 (27.1) *2	32.0 (36.1) *2	44.0 (48.1) *2
Output shaft runout (*3)	mm	0.01				
Output shaft surface runout (*3)	mm	0.01				
Degree of protection		IP20				

*1: Use at a speed of 80 rpm or less during continuous rotation operation.
*2: The values in () are the actuator weight with the mounting base option.
*3: Refer to the "Glossary" on page 64 for index accuracy, repeatability, output shaft runout and output shaft surface runout.
*4: When using as a UL certified product, the maximum temperature is $40^{\circ} \mathrm{C}$.

How to order

How to order

- Set model No. (actuator, driver, cable)
Precautions for model No. selection
*1: Select the driver according to the compatibility table below.
Driver power voltage compatibility table

Drivers type	TS driver		TH driver
	Three-phase/ single-phase 200 to 230 VAC	Single phase 100 to 115 VAC	Three-phase/ single-phase 200 to 230 VAC
	Blank	J 1	
AX1045T	Blank	J 1	
AX1075T	Blank *2		
AX1150T			Blank *2
AX1210T			Blank *2

*2: For models with maximum torque $75 \mathrm{~N} \cdot \mathrm{~m}$ or more, the calculation of torque limit region is different from the usual when used at single-phase 200 VAC. Contact CKD to determine usability.
*3: Cable is a movable cable.
Refer to page 60 for dimensions of the cable.
*4: C When the "BS" option with the mounting base is selected, the positioning pin hole on the bottom is not available. The surface is treated with electroless nickel plating.
*5: Positioning pin holes may not be surface treated.

- Actuator body discrete model No.

Driver discrete model No.

- 200 to 230 VAC

Cable discrete model No.

- Motor cable

AX-CBLM5-DM04

- Resolver cable

AX-CBLR5-DM04
ECable length
(Note: "DM04" when cable length is 4 m)

Speed/maximum torque characteristics

- AX1022T
(rpm)

($\mathrm{N} \cdot \mathrm{m}$)
* Fig. This graph shows the characteristics for 3-phase 200 VAC.

AX1075T
(rpm)

($\mathrm{N} \cdot \mathrm{m}$)

* Fig. This graph shows the characteristics for 3-phase 200 VAC.
- AX1210T
(rpm)

* Fig. This graph shows the characteristics for 3-phase 200 VAC.
(Note) Moment load (simple formula)

(Fig. a)

- AX1045T
(rpm)

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

(Fig. b)
- AX1022T

- AX1045T

6-M6 depth 9
(equipartition)

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

Dimensions

AX1075T

(including hollow
section)

6-M8 depth 12
(equipartition)

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

Dimensions

- AX1210T

6-M8 depth 12 (equipartition)

Dimensions (-C: Connector downward mounting)

- AX1022T/AX1045T-C

AX1075T/AX1150T/AX1210T-C

*) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

Actuator specifications

Descriptions	AX2006T	AX2012T	AX2018T
Max. output torque $\mathrm{N} \cdot \mathrm{m}$	6	12	18
Continuous output torque $\mathrm{N} \cdot \mathrm{m}$	2	4	6
Max. rotation speed rpm	300 (*1)		
Allowable axial load N	1000		
Allowable moment load $\mathrm{N} \cdot \mathrm{m}$	40		
Output shaft moment of inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.00575	0.00695	0.00910
Allowable moment of load inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.3	0.4	0.5
Index accuracy (*3) sec	± 30		
Repeatability (*3) sec	± 5		
Output shaft friction torque $\mathrm{N} \cdot \mathrm{m}$	0.6		0.7
Resolution P/rev	540672		
Motor insulation class	Class F		
Motor withstand voltage	1,500 VAC 1 min		
Motor insulation resistance	$10 \mathrm{M} \Omega$ or more 500 VDC		
Operating ambient temperature	0 to $45^{\circ} \mathrm{C}$ (0 to $40^{\circ} \mathrm{C}$: *4)		
Operating ambient humidity	20 to $85 \% \mathrm{RH}$, no condensation		
Storage ambient temperature	-20 to $80^{\circ} \mathrm{C}$		
Storage ambient humidity	20 to 90\% RH, no condensation		
Atmosphere	No corrosive gas, explosive gas, or dust		
Weight kg	4.7 (6.0) *2	5.8 (7.1) *2	7.5 (8.8) *2
Output shaft runout (*3) mm	0.03		
Output shaft surface runout (*3) mm	0.03		
Degree of protection	IP20		

*1: Use at a speed of 80 rpm or less during continuous rotation operation.
*2: The values in () are the actuator weight with the mounting base option.
*3: Refer to the "Glossary" on page 64 for index accuracy, repeatability, output shaft runout and output shaft surface runout.
*4: When using as a UL certified product, the maximum temperature is $40^{\circ} \mathrm{C}$.

Speed/maximum torque characteristics

- AX2006T

* Fig. This graph shows the characteristics for 3-phase 200 VAC.
- AX2018T

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

* Fig. This graph shows the characteristics for 3-phase 200 VAC.
(Note) Moment load (simple formula)

(Fig. a)
$M(N \cdot m)=F(N) \times L(m)$
M:Moment load
F: Load
L: Distance from output shaft center

(Fig. b)
$M(N \cdot m)=F(N) \times(L+0.02)(m)$ M:Moment load
F: Load
L: Distance from output shaft flange

Always read the safety precautions on pages 73 to 78 before use.

How to order

- Set model No. (actuator, driver, cable)

Body model No.
Option model No.
Precautions for model No. selection
*1: Select the driver according to the compatibility table below.
Driver power voltage compatibility table

$\left.$| | Drivers
 type | Three-phase/
 single-phase
 200
 to 230 VAC |
| :--- | :---: | :---: | | Single phase |
| :---: |
| 100 to 115 VAC | \right\rvert\,

*2: Cable is a movable cable.
Refer to page 60 for dimensions of the cable. Body lead-out cable is not a movable cable.
*3: C When the "BS" option with the mounting base is selected, the positioning pin hole on the bottom is

Code	
Content	
$\mathbf{0 0 6}$	$6 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{0 1 2}$	$12 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{0 1 8}$	$18 \mathrm{~N} \cdot \mathrm{~m}$

*4: Positioning pin holes may not be surface treated.
*5: The surface is treated with electroless nickel plating.

- Actuator body discrete model No.

Driver discrete model No.

- 200 to 230 VAC

AX9000TS $=\mathbf{U 0}$
100 to 115 VAC
AX9000TS-J1-U0 Interface specifications

Cable discrete model No.

- Motor cable

AX-CBLM6-DM04

- Resolver cable

AX-CBLR6-DM04
 (D) Cable length
 $\binom{$ Note: "DMO4" when cable }{ length is 4 m}

Dimensions

AX2006T
AX2012T

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

- AX2018T

Note)
For uses where the cable is repeatedly bent, fix the cable sheath part near the connector of the actuator body.

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

Actuator specifications

Descriptions		AX4009T	AX4022T	AX4045T	AX4075T
Max. output torque	$\mathrm{N} \cdot \mathrm{m}$	9	22	45	75
Continuous output torque	$\mathrm{N} \cdot \mathrm{m}$	3	7	15	25
Max. rotation speed	rpm		240 (*1)		140 (*1)
Allowable axial load	N	800			20000
Allowable moment load	$\mathrm{N} \cdot \mathrm{m}$	40	60	80	200
Output shaft moment of inertia	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.009	0.0206	0.0268	0.1490
Allowable moment of load inertia	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.35 (1.75) (*2)	0.60 (3.00) (*2)	0.90 (5.00) (*2)	5.00 (25.00) (*2)
Index accuracy (*5)	sec				
Repeatability (*5)	sec				
Output shaft friction torque	$\mathrm{N} \cdot \mathrm{m}$	0.8			10.0
Resolution	P/rev				
Motor insulation class					
Motor withstand voltage			1,500	1 min	
Motor insulation resistance			$10 \mathrm{M} \Omega$ or	500 VDC	
Operating ambient temperature			0 to $45^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$: *5)	
Operating ambient humidity			20 to 85% R	ondensation	
Storage ambient temperature					
Storage ambient humidity			20 to 90\% R	ondensation	
Atmosphere			No corrosive gas	sive gas, or dust	
Weight	kg	5.5	12.3 (14.6) *3	15.0 (17.3) *3	36.0 (41.0) *3
Total weight when brake is set	kg	-	16.4 (18.7) *3	19.3 (21.6) *3	54.0 (59.0) *3
Output shaft runout (*5)	mm				
Output shaft surface runout (*5)	mm				
Degree of protection					

*1: Use at a speed of 80 rpm or less during continuous rotation operation.
*2: When using in load conditions up to those given in (), set parameter 72 (integral gain magnification) $=0.3$ (reference value).
*3: The values in () are the actuator weight with the mounting base option.
*4: Contact CKD whenever using continuous rotation operation in combination with parameter 72 (integral gain magnification).
*5: Refer to the "Glossary" on page 64 for index accuracy, repeatability, output shaft runout and output shaft surface runout.
*6: When using as a UL certified product, the maximum temperature is $40^{\circ} \mathrm{C}$.

Electromagnetic brake specifications (option)

Descriptions Compatibility	AX4022T/AX4045T	AX4075T
Type	Non-backlash dry type non-excitation type	
Rated voltage V	24 VDC	
Power capacity W	30	55
Rated current A	1.25	2.30
Static friction torque $\mathrm{N} \cdot \mathrm{m}$	35	200
Armature release time (brake on) msec	50 (reference value)	50 (reference value)
Armature suction time (brake off) msec	150 (reference value)	250 (reference value)
Retention accuracy Minutes	45 (reference value)	
Max. operating frequency times/min	60	40

*1: During output shaft rotation, the electromagnetic brake disc and fixed part may cause a scraping sound.
*2: For travel after brake off, you must change the parameter delay time by the above-mentioned armature suction time.
*3: Though it is a non-backlash type, holding a constant position is difficult if load is applied in the rotation direction.
*4: The armature makes contact with the electromagnetic brake fixed part while the electromagnetic brake is operating, causing the sound.
*5: Manual release of the electromagnetic brake is possible by evenly tightening the bolts in the manual release tap (3 locations). Lightly tighten the bolt, and then turn it about 90° from the stopped position. Once the manual release work is over, be sure to promptly remove the 3 bolts and confirm that the brakes are working to securely hold the output shaft.

How to order

Set model No. (actuator, driver, cable)

*2: For models with maximum torque $75 \mathrm{~N} \cdot \mathrm{~m}$, the calculation of torque limit region is different from the usual when used at single-phase 200 VAC. Contact CKD to determine usability.
*3: Cable is a movable cable.
Refer to page 60 for dimensions of the cable. Body lead-out cable is not a movable cable.
*4: © When the "BS" option with the mounting base is selected, the positioning pin hole on the bottom is not available. The surface is treated with electroless nickel plating.
*5: Positioning pin holes may not be surface treated.
*6: For options, select according to the "Option compatibility table" below. Option compatibility table

	AX4009T	AX4022T	AX4045T	AX4075T
Mounting base (-BS)	\times	\bigcirc	\bigcirc	\bigcirc
Brake (-EB)	\times	\bigcirc	\bigcirc	\bigcirc

Code	
A Size (max. torque)	
$\mathbf{0 0 9}$	$9 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{0 2 2}$	$22 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{0 4 5}$	$45 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{0 7 5}$	$75 \mathrm{~N} \cdot \mathrm{~m}$
B Driver type	
TS	TS driver
C Mounting base	
Blank	Standard (without mounting base)
BS	With mounting base
D Cable length	
DM00	Without cable
DM02	2 m
DM04	4 m (standard length)
DM06	6 m
DM08	8 m
DM10	10 m
DM15	15 m
DM20	20 m
E Brake	
Blank	Standard (without electromagnetic brake)
EB	Negative-actuated electromagnetic brake

F Driver power voltage
Refer to the driver power voltage compatibility table at left.
(G) Interface specifications

U0	Parallel I/O (NPN specifications)
U1	Parallel I/O (PNP specifications)
U2	CC-Link
U3	PROFIBUS-DP
U4	DeviceNet
U5	EtherCAT
U6	EtherNet/IP

*7: The surface of the body is treated with electroless nickel plating.

- Actuator body discrete model No.

Driver discrete model No.

- 200 to 230 VAC
- Cable discrete model No.
- Motor cable

AX-CBLM6-DM04

- Resolver cable

AX-CBLR6-DM04
DCable length
$\binom{$ Note: "DM04" when cable }{ length is 4 m}

AX4000T
 Series

Speed/maximum torque characteristics

- AX4009T

(rpm)

 ($\mathrm{N} \cdot \mathrm{m}$)

* Fig. This graph shows the characteristics for 3-phase 200 VAC.
- AX4045T

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

AX4022T

* Fig. This graph shows the characteristics for 3-phase 200 VAC.
- AX4075T

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

Always read the safety precautions on pages 73 to 78 before use.

Dimensions

AX4009T

6-M5 depth 10 (equipartition)
For mounting rotary table

ote)
For uses where the cable
is repeatedly bent, fix the

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

AX4022T-EB
Electromagnetic brake
For other options, refer to the left figure on the left.

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.
*2) The position of the positioning pin hole is the same as that of AX4022T.

Dimensions

AX4045T	AX4045T-EB
	Electromagnetic brake
	For other options, refer to the left figure on the left.

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.
*2) The position of the positioning pin hole is the same as that of AX4045T.

Dimensions
Dimensions

- AX4075T

AX4075T-EB
Electromagnetic brake
For other options, refer to the left figure on the left.

1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.
*2) The position of the positioning pin hole is the same as that of AX4075T.

ABSODEX

AX4000T Series

Supports large moments of inertia load
Compatible function allows free combination of driver, actuator, and cable Large hollow diameter is convenient for cable wiring and piping, abundant options available Supported driver: TH driver

${ }_{c} \mathrm{~T}_{\text {us }}(\in \lessdot$

Actuator specifications

Descriptions		AX4150T	AX4300T	AX4500T	AX410WT
Max. output torque	$\mathrm{N} \cdot \mathrm{m}$	150	300	500	1000
Continuous output torque	$\mathrm{N} \cdot \mathrm{m}$	50	100	160	330
Max. rotation speed	rpm	100 (*1)		70	30
Allowable axial load	N	20000			
Allowable moment load	$\mathrm{N} \cdot \mathrm{m}$	300	400	500	400
Output shaft moment of inertia	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.2120	0.3260	0.7210	2.7200
Allowable moment of load inertia	$\mathrm{kg} \cdot \mathrm{m}^{2}$	75.00 (*2)	180.00 (*2)	300.00 (*2)	600.00 (*2)
Index accuracy (*4)	sec	± 30			
Repeatability (*4)	sec	± 5			
Output shaft friction torque	$\mathrm{N} \cdot \mathrm{m}$	10.0		15.0	20.0
Resolution	P/rev	540672			
Motor insulation class		Class F			
Motor withstand voltage		1,500 VAC 1 min			
Motor insulation resistance		$10 \mathrm{M} \Omega$ or more 500 VDC			
Operating ambient temperature		0 to $45^{\circ} \mathrm{C}$ (0 to $40^{\circ} \mathrm{C}$: *4)			
Operating ambient humidity		20 to $85 \% \mathrm{RH}$, no condensation			
Storage ambient temperature		-20 to $80^{\circ} \mathrm{C}$			
Storage ambient humidity		20 to 90\% RH, no condensation			
Atmosphere		No corrosive gas, explosive gas, or dust			
Weight	kg	44.0 (49.0) *3	66.0 (74.0) *3	115.0 (123.0) *3	198.0 (217.0) *3
Total weight when brake is set	kg	63.0 (68.0) *3	86.0 (94.0) *3	-	-
Output shaft runout (*4)	mm	0.03			
Output shaft surface runout (*4)	mm	0.05			0.08
Degree of protection		IP20			

*1: Use at a speed of 80 rpm or less during continuous rotation operation
*2: Settings when shipped support large moment of inertia.
*3: The values in () are the actuator weight with the mounting base option.
*4: Refer to the "Glossary" on page 64 for index accuracy, repeatability, output shaft runout and output shaft surface runout.
*5: When using as a UL certified product, the maximum temperature is $40^{\circ} \mathrm{C}$.
Electromagnetic brake specifications (option)

	Compatibility	AX4150T/AX4300T
Descriptions		Non-backlash dry type non-excitation type
Type	V	24 VDC
Rated voltage	W	55
Power capacity	A	2.30
Rated current	$\mathrm{N} \cdot \mathrm{m}$	200
Static friction torque	msec	50 (reference value)
Armature release time (brake on)	250 (reference value)	
Armature suction time (brake off)	msec	45 (reference value)
Retention accuracy	Minutes	40
Max. operating frequency	times $/ \mathrm{min}$	

*1: During output shaft rotation, the electromagnetic brake disc and fixed part may cause a scraping sound.
*2: For travel after brake off, you must change the parameter delay time by the above-mentioned armature suction time.
*3: Though it is a non-backlash type, holding a constant position is difficult if load is applied in the rotation direction.
*4: The armature makes contact with the electromagnetic brake fixed part while the electromagnetic brake is operating, causing the sound.
*5: Manual release of the electromagnetic brake is possible by evenly tightening the bolts in the manual release tap (3 locations). Lightly tighten the bolt, and then turn it about 90° from the stopped position. Once the manual release work is over, be sure to promptly remove the 3 bolts and confirm that the brakes are working to securely hold the output shaft.

Always read the safety precautions on pages 73 to 78 before use.

How to order

Set model No. (actuator, driver, cable)

Body model No. Op			
		F Interface specifications	
		Code	Content
		A Size (max. torque)	
		150	$150 \mathrm{~N} \cdot \mathrm{~m}$
		300	$300 \mathrm{~N} \cdot \mathrm{~m}$
		500	$500 \mathrm{~N} \cdot \mathrm{~m}$
		10W	$1000 \mathrm{~N} \cdot \mathrm{~m}$
		B Driver type	
B Driver type		TH	TH driver
		C Mounting base	
C Mounting base *4		Blank	Standard (without mounting base)
		BS	With mounting base
D Cable length *3		D Cable length	
		DM00	Without cable
		DM02	2 m
- Precautions for model No. selection		DM04	4 m (standard length)
		DM06	6 m
*1: Select the driver according to the compatibility table below. Driver power voltage compatibility table		DM08	8 m
		DM10	10 m
Drivers	TH driver	DM15	15 m
Model	Three-phase/single-phase 200 to 230 VAC	DM20	20 m
AX4150T	Blank *2	E Brake	
AX4300T	Blank *2	Blank	Standard (without electromagnetic brake)
AX4500T	Blank *2	EB	Negative-actuated electromagnetic brake
AX410WT	Blank *2	F Interface specifications	
*2: The calculation of torque limit region is different from the usual when used at single-phase 200 VAC. Contact CKD to determine usability.			
		U0	Parallel I/O (NPN specifications)
		U1	Parallel I/O (PNP specifications)
*3: Cable is a movable cable. Refer to page 60 for dimensions of the cable. *4: C When the "BS" option with the mounting base is selected, the positioning pin hole on the bottom is not available. The surface is treated with electroless nickel plating.		U2	CC-Link
		U3	PROFIBUS-DP
		U4	DeviceNet
		U5	EtherCAT
		U6	EtherNet/IP

*5: For options, select according to the "Option compatibility table" below. Option compatibility table

	AX4150T	AX4300T	AX4500T	AX410WT
Electromagnetic brake (-EB)	\bigcirc	\bigcirc	\times	\times

*6: Positioning pin holes may not be surface treated.
*7: The surface is treated with electroless nickel plating.

- Actuator body discrete model No.

Driver discrete model No.

- 200 to 230 VAC

AX9000TH-U0

F Interface specifications

[^3]- Cable discrete model No.
- Motor cable

AX-CBLM6-DM04

- Resolver cable

AX-CBLR6-DM04

AX4000T
 Series

Speed/maximum torque characteristics

- AX4150T
(rpm)

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

AX4500T

(rpm)

* Fig. This graph shows the characteristics for 3-phase 200 VAC.
(Note) Moment load (simple formula)
(Fig. a)

- AX4300T

(rpm)

* Fig. This graph shows the characteristics for 3-phase 200 VAC.
- AX410WT

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

(Fig. b)

Dimensions

AX4150T

- AX4150T-EB

Electromagnetic brake
For other options, refer to the left figure on the left.

Rotary section (including hollow section)
 Electromagnetic brake
(protection element
attached)

\oplus	0.06	B

$\varphi 10 \mathrm{H} 7$ depth 12 *2)
300 from outlet

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.
*2) The position of the positioning pin hole is the same as that of AX4150T.

Dimensions
Dimensions

- AX4300T

AX4300T-EB
Electromagnetic brake
For other options, refer to the left figure on the left.

1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.
*2) The position of the positioning pin hole is the same as that of AX4300T.

AX4500T

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

Dimensions

- AX410WT

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

Interface specification: Parallel I/O (NPN), Parallel I/O (PNP) CC-Link, PROFIBUS-DP, DeviceNet EtherCAT, EtherNet/IP
c UL us listed C RoHs

Features

- Power supply is divided into main power supply and control power supply
- Wiring method is changed from terminal block to connector
- Smaller/lighter weight (resin body adopted)
-7-segment LED 2-digit display
- Compatible with encoder output (parallel I/O only)
- Serial communication options available
- Monitoring functions such as position information, alarm status, etc. (U2, U3, U4, U5, and U6 options only)

General specifications

Descriptions		Model	
		TS driver AX9000TS	TH driver AX9000TH
Power	Main power supply	Three phase, Single phase 200 VAC $\pm 10 \%$ to 230 VAC $\pm 10 \%$ (*1) 100 VAC $\pm 10 \%$ to 115 VAC $\pm 10 \%$ (J1 Option) (*2) (*3)	
voltage	Control power	$\begin{aligned} & 200 \text { VAC } \pm 10 \% \text { to } 230 \text { VAC } \pm 10 \% \\ & 100 \text { VAC } \pm 10 \% \text { to } 115 \text { VAC } \pm 10 \% \text { (J1 Option) (*2) (* } 3) \end{aligned}$	
Power frequency		$50 / 60 \mathrm{~Hz}$	
Rated input current		200 VAC: 1.8 A 100 VAC: 2.4 A	200 VAC: 5.0 A
Rated output current		1.9 A	5.0 A
Structure		Driver and controller integrated (open type)	
Operating ambient temperature		0 to $50^{\circ} \mathrm{C}$	
Operating ambient humidity		20 to 90\% RH (no condensation)	
Storage ambient temperature		-20 to $65^{\circ} \mathrm{C}$	
Storage ambient humidity		20 to 90\% RH (no condensation)	
Atmosphere		No corrosive gas or dust	
Anti-noise		$1,000 \mathrm{~V}(\mathrm{P}-\mathrm{P})$, pulse width $1 \mu \mathrm{sec}$, rising 1 nsec impulse noise test, induction noise (capacitive coupling)	
Vibration resistance		$4.9 \mathrm{~m} / \mathrm{s}^{2}$	
Weight		Approx. 1.6 kg	Approx. 2.1 kg
Degree of protection		IP2X (excluding CN4 and CN5)	

*1) For models with maximum torque $75 \mathrm{~N} \cdot \mathrm{~m}$ or more, the calculation of torque limit region is different from the usual when used at single-phase 200 VAC. Contact CKD to determine usability.
*2) If 200 to 230 VAC is connected by mistake, when using power voltage 100 to 115 VAC specifications (-J1 option), the driver internal circuit will be damaged.
*3) For models with maximum torque $75 \mathrm{~N} \cdot \mathrm{~m}$ or more, "-J1" cannot be selected.
*4) If the main power is cut off while the actuator is rotating, the rotation may continue due to inertia.
*5) After the main power supply is cut OFF, the motor may rotate by the residual voltage of the driver.

Breaker capacity

TS driver
*1) The value of the rush current is a representative value at 115 VAC and 230 VAC.

How to order

- 200 to 230 VAC

Interface specifications
U0: Parallel I/O (NPN)
U1: Parallel I/O (PNP)
U2: CC-Link
U3: PROFIBUS-DP
U4: DeviceNet
U5: EtherCAT
U6: EtherNet/IP

Performance specifications

Descriptions	Content
No. of control axes	1 axis, 540,672 pulses/1 rotation
Angle setting unit	${ }^{\circ}$ (degree), pulse, indexing No.
Angle min. setting unit	$0.001^{\circ}, 1$ pulse
Speed setting unit	sec, rpm
Speed setting range	0.01 to $100 \mathrm{sec} / 0.11$ to 300 rpm (*1)
Equal divisions	1 to 255
Max. command value	7-digit numeric input $\pm 9,999,999$
Timer	0.01 sec to 99.99 sec
Programming language	NC
Programming method	Set the data through RS-232C port with an interactive terminal, PC, etc.
Operation mode	Auto, MDI, jog, single block, servo OFF, pulse train input mode
Coordinates	Absolute, incremental
Acceleration curve	[5 types] Modified sine (MS), modified constant velocity (MC/ MC2), modified trapezoid (MT), trapecloid (TR)
Status display	LED display CHARGE: Main power supply POWER: Control power
Operation display	Display with 7-segment LED (2 digits)
Communication interface	RS-232C compliant
I/O signal	Refer to interface specification pages.
Program capacity	Approx. 6,000 characters (256)
Electronic thermal	Overheating protection for actuator

*1) Maximum rotation speed differs depending on the actuator connected.

Actuator model No.	Driver model No.	Rush current (A)		Breaker capacity
		Single phase 100 V	Single-phase/three-phase 200 V	Rated current (A)
AX2006T	AX9000TS	16 (*1)	56 (*1)	10
AX1022T, AX2012T, AX2018T AX4009T, AX4022T				
AX1045T, AX4045T				
AX1075T, AX4075T		-		

TH driver

Actuator model No.	Driver model No.	Rush current (A)	Breaker capacity
			Three-phase 200 V
AX1150T, AX4150T			
AX1210T, AX4300T		$56(* 1)$	20
AX4500T			
AX410WT			

*1) The value of the rush current is a representative value at 230 VAC.

Parallel I/O (NPN)

CN3 Input signal

Pin No.	Signal name	Logic	Determination
1 to 2	External power supply input $+24 \mathrm{~V} \pm 10 \%$		
3 to 4	External power supply input GND		
5	Program No. selection input (Bit 0)	Positive	Level
6	Program No. selection input (Bit 1)	Positive	Level
7	Program No. selection input (Bit 2)	Positive	Level
8	Program No. selection input (Bit 3)	Positive	Level
9	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
10	Program No. setting 1st digit input// Program No. selection input (Bit 5)	Positive	Edge Level
11	Reset input	Positive	Edge
12	Origin return directive input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input/ Program stop input	Positive	Level Edge
15	Ready return/Continuous rotation stop input	Positive	Edge
16	Answer input/Position deviation counter reset input	Positive	Edge
17	Emergency stop input	Load	Level
18	Brake release input	Positive	Level

CN3 pulse train input signal

Pin No.	Signal name
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase

Input/output circuit specifications

Content	1 circuit current (mA)	Max. points (Circuit)	Max. current (mA)	Max. power consumption (mA)
Input circuit	4	14	56	1106
Output circuit	50	18	900	
Brake output (BK+, BK-)	75	2	150	

* The maximum simultaneous output points of the output circuit are 14 points out of 18 points.

CN3 Output signal

Pin No.	Signal name	Logic
33	M code output (Bit 0)	Positive
34	M code output (Bit 1)	Positive
35	M code output (Bit 2)	Positive
36	M code output (Bit 3)	Positive
37	M code output (Bit 4)	Positive
38	M code output (Bit 5)	Positive
39	M code output (Bit 6)	Positive
40	M code output (Bit 7)	Positive
41	Imposition output	Positive
42	Positioning completion output	Positive
43	Start input wait output	Positive
44	Alarm output 1	Load
45	Alarm output 2	Load
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/Servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (Incremental)

Pin No.	
23	A phase (Line driver output)
24	-A phase (Line driver output)
25	B phase (Line driver output)
26	-B phase (Line driver output)
27	Z phase (Line driver output)
28	-Z phase (Line driver output)

CN3 input/output circuit specifications

- Input circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$ Rated current 4 mA (at 24 VDC)

Output circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$
Rated current 50 mA (MAX)

[^4]
TS/TH driver

Parallel I/O (PNP)

CN3 Input signal

Pin No.	Signal name	Logic	Determination
1 to 2	External power supply input GND (*1)		
3 to 4	External power supply input $+24 \mathrm{~V} \pm 10 \%$ (*1)		
5	Program No. selection input (Bit 0)	Positive	Level
6	Program No. selection input (Bit 1)	Positive	Level
7	Program No. selection input (Bit 2)	Positive	Level
8	Program No. selection input (Bit 3)	Positive	Level
9	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
10	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
11	Reset input	Positive	Edge
12	Origin return directive input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input/ Program stop input	Positive	Level Edge
15	Ready return/Continuous rotation stop input	Positive	Edge
16	Answer input/Position deviation counter reset input	Positive	Edge
17	Emergency stop input	Load	Level
18	Brake release input	Positive	Level

CN3 Output signal

Pin No.	Signal name	Logic
33	M code output (Bit 0)	Positive
34	M code output (Bit 1)	Positive
35	M code output (Bit 2)	Positive
36	M code output (Bit 3)	Positive
37	M code output (Bit 4)	Positive
38	M code output (Bit 5)	Positive
39	M code output (Bit 6)	Positive
40	M code output (Bit 7)	Positive
41	Imposition output	Positive
42	Positioning completion output	Positive
43	Start input wait output	Positive
44	Alarm output 1	Load
45	Alarm output 2	Load
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/Servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

*1) The wiring differs from that under the PNP specification of AX9000GS/AX9000GH.
CN3 pulse train input signal
CN3 encoder output signal (Incremental)

Pin No.	Signal name
19	PULSE/UP/A phase
20	- PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase

Pin No.	
23	A phase (Line driver output)
24	-A phase (Line driver output)
25	B phase (Line driver output)
26	-B phase (Line driver output)
27	Z phase (Line driver output)
28	-Z phase (Line driver output)

Input/output circuit specifications

Content	1 circuit current (mA)	Max. points (Circuit)	Max. current (mA)	Max. power consumption (mA)
Input circuit	4	14	56	1106
Output circuit	50	18	900	
Brake output (BK+, BK-)	75	2	150	

* The maximum simultaneous output points of the output circuit are 14 points out of 18 points.

CN3 input/output circuit specifications

- Input circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$
Rated current 4 mA (at 24 VDC)

Output circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$
Rated current 50 mA (MAX)

- Pulse string Input circuit
 Max. input frequency Line driver 1 Mpps Open collector 250 Kpps
Encoder Output circuit

Output: line driver
Use line driver: DS26C31

Communication specifications

Descriptions	Specifications
Power supply	5 VDC is supplied from the servo amplifier.
CC-Link version	Ver 1.10
Number of occupied stations (Station type)	2 stations (Remote device station)
Remote input points	48 points
Remote output points	48 points
Remote register input/output	Input 8 words/Output 8 words
Communication speed	$10 \mathrm{M} / 5 \mathrm{M} / 2.5 \mathrm{M} / 625 \mathrm{k} / 156 \mathrm{kbps}$ (Selected by parameter setting)
Connection cable	CC-Link Ver. 1.10 compliant cable (3-core cable with shield)
Transmission format	HDLC compliant
Remote station No.	1 to 63 (Set by a parameter)
Number of connected units	For remote device station only, Max. 32 units/2 stations occupied
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

I/O signal

Device No.	Signal name	Logic	Dataminition
RYn0	Program No. selection input (Bit 0)	Positive	Level
RYn1	Program No. selection input (Bit 1)	Positive	Level
RYn2	Program No. selection input (Bit 2)	Positive	Level
RYn3	Program No. selection input (Bit 3)	Positive	Level
RYn4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
RYn5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
RYn6	Reset input	Positive	Edge
RYn7	Origin return directive input	Positive	Edge
RYn8	Start input	Positive	Edge
RYn9	Servo on input/ Program stop input	Positive	Level Edge
RYnA	Ready return input/Continuous rotation stop input	Positive	Edge
RYnB	Answer input/Position deviation counter reset input	Positive	Edge
RYnC	Emergency stop input	Load	Level
RYnD	Brake release input	Positive	Level
RYnE	Job operation input (CW direction)	Positive	Edge
RYnF	Job operation input (CCW direction)	Positive	Edge
$\mathrm{RY}(\mathrm{n}+1) 0$	Unusable/Travel unit selection input (Bit 0)	Positive	Level
$\mathrm{RY}(\mathrm{n}+1) 1$	Unusable/Travel unit selection input (Bit 1)	Positive	Level
$\mathrm{RY}(\mathrm{n}+1) 2$	Unusable/Travel speed unit selection input	Positive	Level
$\mathrm{RY}(\mathrm{n}+1) 3$	Operation by table, Operation by data input switching input	Positive	Level
$\begin{aligned} & \mathrm{RY}(\mathrm{n}+1) 4 \\ & \mathrm{to})^{2} \\ & \mathrm{RY}(\mathrm{n}+1) \mathrm{F} \end{aligned}$	Unusable		
$\mathrm{RY}(\mathrm{n}+2) 0$	Monitor output execution request	Positive	Level
$\mathrm{RY}(\mathrm{n}+2) 1$	Command code execution request	Positive	Edge
$\begin{aligned} & \mathrm{RY}(\mathrm{n}+2) 2 \\ & \mathrm{to}) 2 \\ & \mathrm{RY}(\mathrm{n}+2) \mathrm{F} \\ & \hline \end{aligned}$	Unusable		
$\begin{gathered} \mathrm{RY}(\mathrm{n}+3) 0 \\ \mathrm{to}+0 \\ \mathrm{RY}(\mathrm{n}+3) \mathrm{F} \\ \hline \end{gathered}$	Unusable	$\overline{7}$	\bar{J}

* n is determined by the setting of the station No.

TB3 Input circuit specifications (Machine stops)

Rated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

Safety precautions

Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.). Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.
For details on the installation of the communication cable, refer to the CC-Link installation manuals.

TS/TH driver

Actuator
AX6000M

PROFIBUS-DP

Communication specifications

$\left.$| Descriptions | Specifications |
| :--- | :--- |
| Communication protocol | PROFIBUS DP-V0 compliant |\(\left|\begin{array}{ll|}\hline I/O data \& Input 8 bytes/Output 8 bytes

\hline $$
\begin{array}{l}\text { Communication } \\
\text { speed }\end{array}
$$ \& $$
\begin{array}{l}12 \mathrm{M} / 6 \mathrm{M} / 3 \mathrm{M} / 1.5 \mathrm{M} / 500 \mathrm{k} \\
/ 187.5 \mathrm{k} / 93.75 \mathrm{k} / 45.45 \mathrm{k} \\
/ 19.2 \mathrm{k} / 9.6 \mathrm{kbps} \\
\text { (Autobaud rate function) }\end{array}
$$

\hline Connection cable \& $$
\begin{array}{l}\text { PROFIBUS compliant cable } \\
\text { (2-wire twisted pair cable with shield) }\end{array}
$$

\hline Node address \& 2 to 125 (Set by a parameter)\end{array}\right|\)| Without repeater: Up to 32 stations for |
| :--- |
| each segment |
| With repeater: Up to 126 stations for |
| each segment | \right\rvert\,

I/O signal

Byte No.	Signal name	Logic	Datemination
0.0	Program No. selection input (Bit 0)	Positive	Level
0.1	Program No. selection input (Bit 1)	Positive	Level
0.2	Program No. selection input (Bit 2)	Positive	Level
0.3	Program No. selection input (Bit 3)	Positive	Level
0.4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
0.5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
0.6	Reset input	Positive	Edge
0.7	Origin return directive input	Positive	Edge
1.0	Start input	Positive	Edge
1.1	Servo on input/ Program stop input	Positive	Level Edge
1.2	Ready return input/Continuous rotation stop input	Positive	Edge
1.3	Answer input/Position deviation counter reset input	Positive	Edge
1.4	Emergency stop input	Load	Level
1.5	Brake release input	Positive	Level
1.6	Job operation input (CW direction)	Positive	Edge
1.7	Job operation input (CCW direction)	Positive	Edge
2.0	Parameter No. (Bit 8)/Travel unit selection input (Bit 0)	Positive	Level
2.1	Parameter No. (Bit 9)/Travel unit selection input (Bit 1)	Positive	Level
2.2	Parameter No. (Bit 10)/Travel speed unit selection input	Positive	Level
2.3	Operation by table, Operation by data input switching input	Positive	Level
$\begin{aligned} & 2.4 \\ & 2.5 \end{aligned}$	Unusable		>
2.6	Monitor output execution request	Positive	Level
2.7	Command code execution request	Positive	Edge
3.0	Parameter No. (Bit 0)/Unusable	Positive	Level
3.1	Parameter No. (Bit 1)/Unusable	Positive	Level
3.2	Parameter No. (Bit 2)/Unusable	Positive	Level
3.3	Parameter No. (Bit 3)/Unusable	Positive	Level
3.4	Parameter No. (Bit 4)/Unusable	Positive	Level
3.5	Parameter No. (Bit 5)/Unusable	Positive	Level
3.6	Parameter No. (Bit 6)/Unusable	Positive	Level
3.7	Parameter No. (Bit 7)/Unusable	Positive	Level

AX (Output) \rightarrow PLC

Byte No.	Signal name	Logic
0.0	M code output (Bit 0)	Positive
0.1	M code output (Bit 1)	Positive
0.2	M code output (Bit 2)	Positive
0.3	M code output (Bit 3)	Positive
0.4	M code output (Bit 4)	Positive
0.5	M code output (Bit 5)	Positive
0.6	M code output (Bit 6)	Positive
0.7	M code output (Bit 7)	Positive
1.0	Imposition output	Positive
1.1	Positioning completion output	Positive
1.2	Start input wait output	Positive
1.3	Alarm output 1	Load
1.4	Alarm output 2	Load
1.5	Output 1 during indexing/ Origin position output	Positive
1.6	Output 2 during indexing/ Servo state output	Positive
1.7	Ready output	Positive
2.0	Segment position strobe output	Positive
2.1	M code strobe output	Positive
$\begin{array}{r} 2.2 \\ \text { to } \\ 2.5 \end{array}$	Unusable	
2.6	Monitoring	Positive
2.7	Command code execution completed	Positive
$\begin{array}{r} 3.0 \\ \text { to } \\ 3.7 \end{array}$	Unusable	

TB3 Input circuit specifications (Machine stops)

Rated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

Safety precautions

For details on the installation of a communication cable, refer to "Installation Guideline for PROFIBUS DP/FMS" issued by the PROFIBUS Organization or the PROFIBUS wiring guide.

DeviceNet

Communication specifications

Descriptions	Specifications
Power supply for communication	11 to 25 VDC
$\begin{array}{l}\text { Current consumption of power } \\ \text { supply for communication }\end{array}$	50 mA or less
Communication protocol	DeviceNet compliant: Remote I/O
Number of occupied nodes	Input 8 bytes/Output 8 bytes
Communication speed	$\begin{array}{l}500 \mathrm{k} / 250 \mathrm{k} / 125 \text { kbps } \\ \text { (Selected by parameter setting) }\end{array}$
Connection cable	$\begin{array}{l}\text { DeviceNet compliant cable } \\ \text { (5-wire cable with shield, 2 signal } \\ \text { lines, 2 power cables, 1 shield) }\end{array}$
Node address	0 to 63 (Set by a parameter)
Number of connected units	Max. 64 units (including the master)
Monitor function	$\begin{array}{l}\text { Present position within 1 rotation } \\ \text { (degree, pulse), position deviation } \\ \text { amount, program No., electronic } \\ \text { thermal, rotation speed, point table }\end{array}$
No., torque load factor, acceleration,	
alarm, parameter, operation mode	

I/O signal

Byte No.	Signal name	Logic	Datemination
0.0	Program No. selection input (Bit 0)	Positive	Level
0.1	Program No. selection input (Bit 1)	Positive	Level
0.2	Program No. selection input (Bit 2)	Positive	Level
0.3	Program No. selection input (Bit 3)	Positive	Level
0.4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
0.5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
0.6	Reset input	Positive	Edge
0.7	Origin return directive input	Positive	Edge
1.0	Start input	Positive	Edge
1.1	Servo on input/ Program stop input	Positive	Level Edge
1.2	Ready return input/Continuous rotation stop input	Positive	Edge
1.3	Answer input/Position deviation counter reset input	Positive	Edge
1.4	Emergency stop input	Load	Level
1.5	Brake release input	Positive	Level
1.6	Job operation input (CW direction)	Positive	Edge
1.7	Job operation input (CCW direction)	Positive	Edge
2.0	Parameter No. (Bit 8)/Travel unit selection input (Bit 0)	Positive	Level
2.1	Parameter No. (Bit 9)/Travel unit selection input (Bit 1)	Positive	Level
2.2	Parameter No. (Bit 10)/Travel speed unit selection input	Positive	Level
2.3	Operation by table, Operation by data input switching input	Positive	Level
$\begin{aligned} & 2.4 \\ & 2.5 \end{aligned}$	Unusable		
2.6	Monitor output execution request	Positive	Level
2.7	Command code execution request	Positive	Edge
3.0	Parameter No. (Bit 0)/Unusable	Positive	Level
3.1	Parameter No. (Bit 1)/Unusable	Positive	Level
3.2	Parameter No. (Bit 2)/Unusable	Positive	Level
3.3	Parameter No. (Bit 3)/Unusable	Positive	Level
3.4	Parameter No. (Bit 4)/Unusable	Positive	Level
3.5	Parameter No. (Bit 5)/Unusable	Positive	Level
3.6	Parameter No. (Bit 6)/Unusable	Positive	Level
3.7	Parameter No. (Bit 7)/Unusable	Positive	Level

AX (Output) \rightarrow PLC

Byte No.	Signal name	Logic
0.0	M code output (Bit 0)	Positive
0.1	M code output (Bit 1)	Positive
0.2	M code output (Bit 2)	Positive
0.3	M code output (Bit 3)	Positive
0.4	M code output (Bit 4)	Positive
0.5	M code output (Bit 5)	Positive
0.6	M code output (Bit 6)	Positive
0.7	M code output (Bit 7)	Positive
1.0	Imposition output	Positive
1.1	Positioning completion output	Positive
1.2	Start input wait output	Positive
1.3	Alarm output 1	Load
1.4	Alarm output 2	Load
1.5	Output 1 during indexing/ Origin position output	Positive
1.6	Output 2 during indexing/ Servo state output	Positive
1.7	Ready output	Positive
2.0	Segment position strobe output	Positive
2.1	M code strobe output	Positive
2.7	Unusable	
2.7	Command code execution completed	Positive
2.2	Unusable	
2.5		
to		

TB3 Input circuit specifications (Machine stops)

Rated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

Safety precautions

Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.).Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.
For details on the installation of the communication cable, refer to the DeviceNet installation manuals.

TS/TH driver

EtherCAT

Communication specifications

Descriptions	Specifications
Communication protocol	EtherCAT
Communication speed	100 Mbps (fast Ethernet, full duplex)
Process data	Fixed PDO mapping
Max. PDO data length	RxPDO: 40 bytes/TxPDO: 40 bytes
Station arias	0 to 65535 (Set by a parameter)
Connection cable	EtherCAT compliant cable (CAT5e or higher twisted pair cable (double shield with aluminum tape and braid) is recommended.)
Node address	Automatic indexing the master
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

I/O signal
PLC \rightarrow AX (Input)

Index	$\begin{array}{\|c} \hline \text { Sub } \\ \text { Index } \end{array}$	Display name	bit	Signal name	Logic	Datemination
0x2001	0x01	Input signal 1	0	Program No. selection input (Bit 0)	Positive	Level
			1	Program No. selection input (Bit 1)	Positive	Level
			2	Program No. selection input (Bit 2)	Positive	Level
			3	Program No. selection input (Bit 3)	Positive	Level
			4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
			5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
			6	Reset input	Positive	Edge
			7	Origin return directive input	Positive	Edge
			8	Start input	Positive	Edge
			9	Servo on input/ Program stop input	Positive	Level Edge
			10	Ready return input/Continuous rotation stop input	Positive	Edge
			11	Answer input/Position deviation counter reset input	Positive	Edge
			12	Emergency stop input	Load	Level
			13	Brake release input	Positive	Level
			14	Job operation input (CW direction)	Positive	Edge
			15	Job operation input (CCW direction)	Positive	Edge
			16	Unusable/Travel unit selection input (Bit 0)	Positive	Level
			17	Unusable/Travel unit selection input (Bit 1)	Positive	Level
			18	Unusable/Travel speed unit selection input	Positive	Level
			19	Operation by table, Operation by data input switching input	Positive	Level
			$\begin{array}{\|l\|} \hline 20 \\ \text { to } \\ 31 \\ \hline \end{array}$	Unusable		
	0x02	Input signal 2	0	Monitor output execution request	Positive	Level
			1	Command code execution request	Positive	Edge
			$\begin{array}{\|c} \hline 2 \\ \text { to } \\ 31 \\ \hline \end{array}$	Unusable		

TB3 Input circuit specifications (Machine stops)
24 VDC external power (not included)

Rated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

PDO mapping
RxPDO

Index	Sub Index	Display name	Content
0x1600	0x00	Number of PDO objects	10
	0×01	Input signal 1	0x2001-0x01
	0×02	Input signal 2	0x2001-0x02
	0×03	Input data 1	0x2003-0x01
	0×04	Input data 2	0x2003-0x02
	0×05	Input data 3	0x2003-0x03
	0×06	Input data 4	0x2003-0x04
	0x07	Input data 5	0x2003-0x05
	0×08	Input command 1	0x2003-0x06
	0x09	Input command 2	0x2003-0x07
	$0 \times 0 \mathrm{~A}$	Input command 3	0x2003-0x08

TxPDO

Index	Sub Index	Display name	Content
0x1A00	0x00	Number of PDO objects	10
	0×01	Output signal 1	0x2005-0x01
	0×02	Output signal 2	0x2005-0x02
	0×03	Output data 1	0x2007-0x01
	0×04	Output data 2	0x2007-0x02
	0×05	Output data 3	0x2007-0x03
	0×06	Output data 4	0x2007-0x04
	0x07	Output data 5	0x2007-0x05
	0×08	Output command 1	0x2007-0x06
	0x09	Output command 2	0x2007-0x07
	0x0A	Output command 3	0x2007-0x08

I/O signal

AX (Output) \rightarrow PLC

Index	$\begin{gathered} \hline \text { Sub } \\ \text { Index } \end{gathered}$	Display name	bit	Signal name	Logic
0x2005	0x01	Output signal 1	0	M code output (Bit 0)	Positive
			1	M code output (Bit 1)	Positive
			2	M code output (Bit 2)	Positive
			3	M code output (Bit 3)	Positive
			4	M code output (Bit 4)	Positive
			5	M code output (Bit 5)	Positive
			6	M code output (Bit 6)	Positive
			7	M code output (Bit 7)	Positive
			8	Imposition output	Positive
			9	Positioning completion output	Positive
			10	Start input wait output	Positive
			11	Alarm output 1	Load
			12	Alarm output 2	Load
			13	Output 1 during indexing/Origin position output	Positive
			14	Output 2 during indexing/Servo state output	Positive
			15	Ready output	Positive
			16	Segment position strobe output	Positive
			17	M code strobe output	Positive
			18 to 31 1	Unusable	У
	0x02	Output signal 2	0	Monitoring	Positive
			1	Command code execution completed	Positive
			2 to 31	Unusable	\}

Safety precautions

Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.).

- Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.
\square For details on the installation of the communication cable, refer to ETG. 1600 EtherCAT installation guidelines.

EtherNet/IP

Communication specifications

Descriptions	Specifications
Communication protocol	EtherNet/IP
Communication speed	Automatic setting (100 Mbps/10 Mbps, full duplex/half duplex)
Occupied bytes	Input: 32 bytes/Output: 32 bytes
IP address	0.0 .0 .0 to 255.255.255.255 (Set by a parameter)
Subnet mask	0.0.0.0 to 255.255.255.255 (Set by a parameter)
Default gateway	0.0 .0 .0 to 255.255.255.255 (Set by a parameter)
RPI (Packet interval)	10 msec to 1,000 msec
Connection	EtherNet/IP compliant cable (Cable or higher twisted pair cable (double shield with aluminum tape and braid) is recommended.)
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

I/O signal PLC \rightarrow AX (Input)					I/O signal AX (Output) \rightarrow PLC				
Byte	bit	Signal name	Logic	Datamination	Byte	bit	Signal name	Logic	
0	0	Program No. selection input (Bit 0)	Positive	Level	0	0	M code output (Bit 0)	Positive	
	1	Program No. selection input (Bit 1)	Positive	Level		1	M code output (Bit 1)	Positive	
	2	Program No. selection input (Bit 2)	Positive	Level		2	M code output (Bit 2)	Positive	
	3	Program No. selection input (Bit 3)	Positive	Level		3	M code output (Bit 3)	Positive	
	4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge		4	M code output (Bit 4)	Positive	
				Level		5	M code output (Bit 5)	Positive	
	5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level		6	M code output (Bit 6)	Positive	
						7	M code output (Bit 7)	Positive	
	6	Reset input	Positive	Edge	1	0	Imposition output	Positive	
	7	Origin return directive input	Positive	Edge		1	Positioning completion output	Positive	
1	0	Start input	Positive	Edge		2	Start input wait output	Positive	
	1	Servo on input/ Program stop input	Positive	Level Edge		3	Alarm output 1	Load	
						4	Alarm output 2	Load	
	2	Ready return input/Continuous rotation stop input	Positive	Edge		5	Output 1 during indexing/Origin	-	
	3	nswer input/Position deviation ounter reset input	Positive	Edge			position output	Positive	
	4	Emergency stop input	Load	Level		6	Output 2 during indexing/Servo state output	Positive	
	5	Brake release input	Positive	Level		7	Ready output	Positive	
	6	Job operation input (CW direction)	Positive	Edge	2	0	Segment position strobe output	Positive	
	7	Job operation input (CCW direction)	Positive	Edge		1	M code strobe output	Positive	
2	0	Unusable/Travel unit selection input(Bit 0)	Positive	Level		2 to 7	Unusable		
					3	-	Unusable		
	1	Unusable/Travel unit selection input (Bit 1)	Positive	Level	4	0	Monitoring	Positive	
		Unusable/Travel speed unit selection input Operation by table, Operation by data input switching input	Positive	Level		1	Command code execution completed	Positive	
	2 3 4 to 7	Operation by table, Operation by data input switching input		Level		2 to 7	Unusable		
			Positive		5	-	Unusable		
	4 to 7	Unusable			6	-	Unusable		
3	-	Unusable			7	-	Unusable		
4	$\begin{array}{\|c\|} \hline 0 \\ \hline 1 \\ \hline 2 \text { to } 7 \\ \hline \end{array}$	Monitor output execution request	Positive	Level	8	-	Monitor data 1		
		Command code execution request	Positive	Edge	9				
	2 to 7	Unusable			10	-			
5	-	Unusable			11	-			
6	-	Unusable			12	-	Monitor data 2		
7		Unusable		\bigcirc	13	-			
8		Monitor code 1			14	-			
9	-				15				
	-				16	-	Monitor data 3		
11	-				17	-			
12	-	Monitor code 2			18	-			
13	-				19	-			
14					20	-	Response code		
15						-			
16	-	Monitor code 3			22	-			
17	-				23	-			
18	-				24	-	Read data		
19	-				25	-			
20	-	Command code			26	-			
21	-				27	-			
22	-				28	-	Unusable		
23	-				29	-			
24	-	Write data/A code or P code			30 31				
25	-								
26	-								
27	-								
28	-	Data setting/F code							
29	-								
30	-								
31	-								

TB3 Input circuit specifications (Machine stops)
24 VDC external power (not included)

Rated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

Safety precautions

Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.).
Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.
For details on the installation of the communication cable, refer to the EtherNet/IP installation manuals.

TS/TH driver

Dimensions

TS driver

Installation hole machining drawing

Accessories supplied with the driver

Model No.	Specifications	CN3 Connector	Power supply connector (CN4)	Motor cable connector (CN5)
AX9000TS-U0 AX9000TH-U0	Parallel I/O (NPN)	$\begin{aligned} & \text { 10150-3000PE (Plug) } \\ & \text { 10350-52A0-008 (Shell) } \\ & \text { Sumitomo 3M Ltd. } \end{aligned}$	PC4/5-ST-7.62 Phoenix Contact	PC4/3-ST-7.62 Phoenix Contact
AX9000TS-U1 AX9000TH-U1	Parallel I/O (PNP)			
$\begin{aligned} & \text { AX9000TS-U2 } \\ & \text { AX9000TH-U2 } \\ & \hline \end{aligned}$	CC-Link	BLZP5.08HC/05/180F AU OR BX Weidmüller		
$\begin{array}{\|l} \hline \text { AX9000TS-U3 } \\ \text { AX9000TH-U3 } \end{array}$	PROFIBUS-DP	Not attached		
AX9000TS-U4 AX9000TH-U4	DeviceNet	MSTB2.5/5-STF-5.08AUM Phoenix Contact		
$\begin{aligned} & \text { AX9000TS-U5 } \\ & \text { AX9000TH-U5 } \end{aligned}$	EtherCAT	Not attached		
AX9000TS-U6 AX9000TH-U6	EtherNet/IP	Not attached		

For additional orders of parts, refer to the parts model No. table.

Installation Dimension

Installation Dimension

- TS driver

- TH driver

*1) Determine the dimension with extra allowance according to a cable you want to use.

A. Safety precautions

The ABSODEX driver does not have a dust-proof/waterproof structure.
To prevent dust, water, oil or other substances from entering the driver, provide protection according to the working environment.
Install the ABSODEX driver away from other devices, walls or other structures by 50 mm or more from the top, bottom and sides. When heat is generated from other drivers or devices, check that the ambient temperature does not exceed $50^{\circ} \mathrm{C}$.

TS/TH driver

Panel Details

- Parallel I/O (NPN, PNP)
- For 200 VAC

- For 100 VAC

- PROFIBUS-DP

- EtherCAT

Panel Details

Cable Specifications

Cable dimensions	Product name/model No.	Cable's min. bending radius
- AX1000T Actuator side 	Resolver cable AX-CBLR5-DM \square	60 mm
	Motor cable AX-CBLM5-DM \square (*1)	110 mm
- AX2000T, AX4000T Actuator side Driver side L (cable length)	Resolver cable AX-CBLR6-DM \square	60 mm
	Motor cable AX-CBLM6-DM \square (*1)	110 mm

[^5]
ASafety precautions

- Connect the correct motor cable and driver by checking the mark tube of the cable and the display of the driver.
- For uses where the cable is repeatedly bent, fix the cable sheath part near the connector of the actuator body.
- For the AX4009T and AX2000T Series, the lead-out cable of the actuator section is not movable. Make sure to fix the cable in the connector section to prevent the cable from moving. Do not pull the lead-out cable to lift the unit or do not apply an excessive force to the cable. Otherwise, malfunction, an alarm, damage of the connector part, or disconnection may result.
When connecting the cable, fully insert the connector. Also, tighten the connector mounting screws and fix screws securely.
- Do not disconnect, extend, or make other modifications to the cable. Such modifications may cause failure or malfunction.
- For the cable length L, refer to the cable length shown in the How to order.

ABSODEX Handy Terminal AX0180

TS/TH driver

RoHS

Features

(1) Programming is easy.

For an equal segment program, you can easily write a program by answering the questions interactively from the handy terminal.
(2) No dedicated power supply is required.

The power is supplied from ABSODEX.
(3)Backup is available.

The programs and parameters can be stored, and programs can be copied.
(4) Available also for conventional models. With the S/GS/H/GH/WGH type drivers, this product operates in the same way as the conventional handy terminal (AX0170H).

Specifications

Descriptions	AX0180
Operation mode	Edit, Display, Parameter, Operation, and Copy modes
Program capacity	Equal segment or NC program 2,000 characters (One)
Program No.	Equal segment program: Program No. 0 to 999
Display	16 characters $\times 2$ digits (LCD display)
Input keys	17 keys
Backup	(Stop key: 1, Control key: 5 characters, Number key: 11)
Power supply	Super capacitor (about 3 hours)
Cable length	Supplied by the ABSODEX driver
Operating ambient temperature	2 m
Operating ambient humidity	0 to $50^{\circ} \mathrm{C}$
Storage ambient temperature	20 to 90% (no condensation)
Storage ambient humidity	-20 to $80^{\circ} \mathrm{C}$
Atmosphere	20 to 90% (no condensation)
Weight	No corrosive gas or dust

*For the English version, messages are displayed in English. The characters on the operation panel are the same as those of the Japanese version.

Dimensions

- Handy terminal

Handy terminal

Interactive programming

You can easily write a program by inputting values for items as follows:
[Example of input values for a program]

New	Program No. [0 to 999]
Origin return position	1. Origin
	2. Indexing
Return direction	1. CW
	2. CCW
	3. Shortcut
Return speed	[1.0 to 20.0] rpm
Number of segments	[1 to 255]
Travel time	[0.01 to 100] seconds
Rotation direction	1. CW
	2. CCW
Stop processing	1. Wait for start
	2. Dwell
Brake	1. Using the product
	2. Vacant
Delay timer	[0.01 to 99.99] seconds
M Cord	1. M Cord
	2. Segmentation position

When you want to...

Make a trial run of ABSODEX!		Edit mode	
		12 sample progra can try them when	s are provided. You making adjustment.
Write an ABSODEX program and store it into ABSODEX!	$>$	Edit mode	
		You can input pro store the program	ramming values and by a simple procedure.
Run a program stored in ABSODEX!	λ	Operation mode	
		You can easily start a program by specifying the program No.	

Make use of the	7	Parameter mode
cam curve!		5 types of cam cu Driving operation the properties is
Check the ON/OFF of I/O!	\longrightarrow	Display mode

- Noise filter

Part name	Compatible model No.	Model No.
Noise filter for power supply (Three phase/Single phase 200 to 230 VAC)	AX Series	AX-NSF-3SUP-EF10-ER-6
Noise filter for power supply (Single phase 250 VAC/15 A *2)	AX Series	AX-NSF-NF2015A-OD
Surge protector	AX Series	AX-NSF-RAV-781BXZ-4
Ferrite core for motor cable	AX Series	AX-NSF-RC5060ZZ
Clamp filter (set of 2)	AX6000M Series	AX-NSF-ZCAT2035-0930A

*4) With 250 VAC. Also available with 24 VDC power supply
*5) To make these products compliant with EU standards and CE marking or UL standards, the user is required to provide accessories such as a circuit breaker and FG clamp. For details, refer to the instruction manual or (technical data).

Other parts

Part name	Compatible model No.	Model No.
Power supply connector (CN4)	XS, TS/TH Series	AX-CONNECTOR-PC45
Motor cable connector (CN5)	XS, TS/TH Series	AX-CONNECTOR-PC43
Power supply connector protective cover (CN4)	XS, TS/TH Series	AX-COVER-KGG-PC45
Motor cable connector protective cover (CN5)	XS, TS/TH Series	AX-COVER-KGG-PC43
I/O connector (CN3: For Parallel I/O)	AX Series (-U0, U1)	AX-CONNECTOR-MDR
I/O connector (CN3: For CC-Link)	AX Series (-U2)	AX-CONNECTOR-BLZ5
I/O connector (CN3: For DeviceNet)	AX Series (-U4)	AX-CONNECTOR-MSTB
Protection element for electromagnetic brake	AX Series (-EB)	AX-PARTS-TNR20V121K
Power supply connector set (with open tool)	AX9000MU Series	AX-CONNECTOR-04JFAT-KIT

* The parts listed in this page are commercially available from CKD.

Glossary

Index accuracy

The index accuracy of ABSODEX is the difference between the target position set by an NC program and the actual stop position.
This target position is the angle (seconds) from the reference station (origin return position)
As shown in the right figure, the index accuracy is calculated using the maximum value and minimum value of the differences between the target positions and actual stop positions. These positions are expressed with $\pm x$ seconds and the width as shown in the figure. For angle measurement, a high-precision encoder is used.

Repeatability

The repeatability expressed by angle (seconds) is the maximum value of angle irregularities of the repeat stop positions when reciprocating operation is performed for a certain target position under the same conditions.
The repeatability and the index accuracy must be used differently according to the accuracy characteristics required for the machine.
*Second: A unit (degree/minute/second) for expressing an angle.
1 degree $=60$ minutes $=3600$ seconds

Index accuracy measurement example

Output shaft runout

This the runout accuracy of the inlay side on the table mounting side.

Output shaft surface runout

This the runout accuracy of the table mounting side.

* Measured at the periphery of the screw hole for mounting the table.

Selection guide

Units and symbols of operation conditions		
Load moment of inertia	$\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$	J
Travel angle	$\left({ }^{\circ}\right)$	Ψ
Travel time	(s)	t_{1}
Cycle time	(s)	t_{0}
Load friction torque	$(\mathrm{N} \cdot \mathrm{m})$	TF
Work torque	$(\mathrm{N} \cdot \mathrm{m})$	Tw
Cam curve		Select from $(\mathrm{MS}, \mathrm{MC}, \mathrm{MT}, \mathrm{TR})$

1. Moment of inertia of load

Calculate the moment of inertia of load and temporarily select an actuator that can allow the moment of inertia.

2. Rotation speed

The max. rotation speed Nmax is obtained by the formula:

$$
\begin{equation*}
N_{\max }=V_{m} \cdot \frac{\psi}{6 \cdot t_{1}} \tag{rpm}
\end{equation*}
$$

Where ψ and t_{1} represent travel angle (${ }^{\circ}$) and travel time (s), respectively. V_{m} is a constant determined by the cam curve.

Check that the value of Nmax dose not exceed the max. rotation speed defined in the actuator specifications.
[Precautions]
The actual travel time is the directive travel time of the ABSODEX plus the stabilization time.

Though the stabilization time depends on working conditions, it is approximately between 0.025 and 0.2 seconds.
For the travel time t_{1} in model selection, use the directive travel time of ABSODEX. Also, for setting the travel time with an NC program, use the directive travel time of ABSODEX.
(Note) The friction torque works on the output shaft by the bearing, sliding surface, and other friction. The friction torque can be obtained by the following relational expression:
$\mathrm{Tf}=\mu \cdot \mathrm{Ff} \cdot \mathrm{Rf}(\mathrm{N} \cdot \mathrm{m})$
$\mathrm{Ff}=\mathrm{m} \cdot \mathrm{g}$
where μ : Coefficient of friction

Rolling friction	Sliding friction
$\mu=0.03$ to 0.05	$\mu=0.1$ to 0.3

Ff : Force working on the sliding surface, bearing, etc. (N)
Rf : Average friction radius (m)
m : Weight (kg)
$\mathrm{g}:$ Gravity acceleration (m/s²)

3. Load torque

a) The maximum load torque is obtained with the following formula.
$\mathrm{T}_{\mathrm{m}}=\left[\mathrm{A}_{\mathrm{m}} \cdot\left(\mathrm{J}+\mathrm{J}_{\mathrm{M}}\right) \cdot \frac{\psi \cdot \pi}{180 \cdot \mathrm{t}_{1}{ }^{2}}+\mathrm{T}_{\mathrm{F}}+\mathrm{T}_{\mathrm{w}}\right] \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{MF}}$
b) The effective value of the load torque is obtained with the following formula.
$T_{\text {rms }}=\sqrt{\frac{t_{1}}{t_{0}} \cdot\left[r \cdot A_{m} \cdot\left(J+J_{M}\right) \cdot \frac{\psi \cdot \pi}{180 \cdot t_{1}{ }^{2}} \cdot f c\right]^{2}+\left(T_{F} \cdot f c+T_{w} \cdot f C+T_{M F}\right)^{2}}$
The values in the following table are applied to Vm, Am and r .

Cam curve	V_{m}	A_{m}	r
MS	1.76	5.53	0.707
MC	1.28	8.01	0.500
MT	2.00	4.89	0.866
TR	2.18	6.17	0.773

Jm, Tmf, fc are as follows:
JM : Output shaft moment of inertia (kg•m²)
TMF : Output shaft friction torque ($\mathrm{N} \cdot \mathrm{m}$)
fc : Used factor (For normal use: fc = 1.5)

For the temporarily selected actuator,
Max. load torque < Max. output torque
Effective value of load torque < Continuous output torque If either of the above conditions is not met, re-calculate the load torque with a larger actuator.

Note) There is a torque limit region where the max. torque decreases at the time of high-speed rotation.
For use in the torque limit region, use the mode selection software to determine the availability of the device.
(Note) The work torque indicates an exterior load, expressed as torque, working as the load on the ABSODEX output shaft.

The work torque Tw is calculated by the following formula:
$\mathrm{Tw}=\mathrm{Fw} \times \mathrm{Rw}(\mathrm{N} \cdot \mathrm{m})$
Fw (N) : Necessary force for work
Rw (m) : Working radius
(Example)
For the body on its side (the output shaft in the horizontal direction), the table, workpiece, jigs and so forth are work torques.

4. Regenerative power

For AX9000TS/AX9000TH and AX9000XS drivers, calculate the regenerative power using the following simple formula and determine the availability.

- For AX9000TS/AX9000XS drivers

AX9000TS type drivers and AX9000XS type drivers do not come with a built-in regenerative resister.
Therefore, check that the value of the regenerative energy calculated by the simple formula below does not exceed energy chargeable with a capacitor (table below).
$E=\left(\frac{\mathrm{V}_{\mathrm{m}} \cdot \psi \cdot \pi}{\mathrm{t}_{1} \cdot 180}\right)^{2} \cdot \frac{\left(\mathrm{~J}+\mathrm{J}_{\mathrm{M}}\right)}{2}(\mathrm{~J})$

Power specifications	Processable regenerative energy (J)	Remarks
200 VAC	17.2	Value when the input voltage of the main power is 200 VAC
100 VAC (-J1)	17.2	Value when the input voltage of the main power is 100 VAC

If this condition is not met, contact CKD.
For AX9000TH drivers
AX9000TH drivers have limitation on the consumption capability of the regenerative power in the driver. The value is obtained by the following simple formula:
$\mathrm{W}=\left(\frac{\mathrm{V}_{\mathrm{m}} \cdot \psi \cdot \pi}{\mathrm{t}_{1} \cdot 180}\right)^{2} \cdot \frac{\left(\mathrm{~J}+\mathrm{J}_{\mathrm{M}}\right)}{2 \cdot \mathrm{t}_{0}}(\mathrm{~W})$
$\mathrm{W} \leq 40$
If this condition is met, re-consider the operation conditions and load conditions.

Selection guide (1)
[Working conditions]
Table radius
Table weight
Radius of jig rotation
Jig weight

Number of jigs
: R = 0.4 (m)
: $\mathrm{Wt}=79$ (kg)
: $\mathrm{Re}=0.325(\mathrm{~m})$
: Wj = 10 (kg/piece) (Including the workpiece weight)
[Operating conditions]
Travel angle $\quad: \psi=90\left({ }^{\circ}\right)$

Travel time $\quad: \mathrm{t}_{1}=0.8(\mathrm{~s})$
Cycle time $\quad:$ to $=4(\mathrm{~s})$
Load friction torque : $\mathrm{T}_{\mathrm{F}}=0(\mathrm{~N} \cdot \mathrm{~m})$
Work torque: $\mathrm{Tw}_{\mathrm{w}}=0(\mathrm{~N} \cdot \mathrm{~m})$
Output shaft friction : TmF ($\mathrm{N} \cdot \mathrm{m}$)
torque
According to the actuator specifications
Cam curve : MS (modified sine)

STEP 1

Calculating moment of inertia

STEP 2
Max. rotation speed

STEP 3

Load torque

STEP 4
Regenerative power

STEP 5
Selection guide

a) Table	$\mathrm{J}_{1}=\frac{W_{t} \times R^{2}}{2}=\frac{79 \times 0.4^{2}}{2}=6.32$	$\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
b) Jig, workpiece	$\mathrm{J}_{2}=\mathrm{N} \times \mathrm{W}_{\mathrm{j}} \times \mathrm{Re}^{2}=4 \times 10 \times 0.325^{2}=4.225$	$\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
c) Sum of moment of	$\mathrm{J}=\mathrm{J}_{1}+\mathrm{J}_{2}=6.32+4.225=10.545$	$\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$

(kg•m ${ }^{2}$)
($\mathrm{kg} \cdot \mathrm{m}^{2}$)
$\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
$\mathrm{N}_{\text {max }}=\mathrm{V}_{\mathrm{m}} \cdot \frac{\psi}{6 \cdot \mathrm{t}_{1}}=1.76 \times \frac{90}{6 \times 0.8}=33(\mathrm{rpm})$
Check that $N_{\text {max }}$ does not exceed the maximum rotation speed of ABSODEX.

At first, perform calculation for the smallest model that allows the moment of inertia of load.
The allowed moment of inertia of AX4300T is $180\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$, which means that this load is allowed.
Max. load torque

$$
\begin{aligned}
\mathrm{T}_{\mathrm{m}} & =\left[\mathrm{Am}_{\mathrm{m}} \cdot(\mathrm{~J}+\mathrm{JM}) \cdot \frac{\psi \cdot \pi}{180 \cdot \mathrm{t}_{1}{ }^{2}}+\mathrm{T}_{F}+\mathrm{Tw}\right] \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{MF}} \\
& =\left[5.53 \times(10.545+0.326) \times \frac{90 \times \pi}{180 \cdot 0.8^{2}}+0+0\right] \times 1.5+10 \\
& =231.3(\mathrm{~N} \cdot \mathrm{~m})
\end{aligned} \text { Effective value of load torque }
$$

$T_{r m s}=\sqrt{\frac{t_{1}}{t_{0}} \cdot\left[r \cdot A_{m} \cdot\left(J+J_{M}\right) \cdot \frac{\psi \cdot \pi}{180 \cdot t_{1}{ }^{2}} \cdot f c\right]^{2}+\left(T_{F} \cdot f c+T_{W} \cdot f c+T_{M F}\right)^{2}}$
Trms $=\sqrt{\frac{0.8}{4} \times\left[0.707 \times 5.53 \times 10.871 \times \frac{90 \times \pi}{180 \cdot 0.8^{2}} \times 1.5\right]^{2}+(0 \times 1.5+0 \times 1.5+10)^{2}}$

$$
=70.7(\mathrm{~N} \cdot \mathrm{~m})
$$

$$
\begin{aligned}
\mathrm{W} & =\left(\frac{\mathrm{V} m \cdot \psi \cdot \pi}{\mathrm{t} 1 \cdot 180}\right)^{2} \cdot \frac{(\mathrm{~J}+\mathrm{JM})}{2 \cdot \mathrm{to}_{0}} \\
& =\left(\frac{1.76 \times 90 \times \pi}{0.8 \times 180}\right)^{2} \times \frac{10.871}{2 \times 4}=16.23(\mathrm{~W})
\end{aligned}
$$

$\mathrm{W} \leq 40(\mathrm{~W})$

Consider whether the temporarily selected AX4300T is available.
Sum of the moment of inertia of load $10.545 \leq 180\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Max. rotation speed $\quad 33 \leq 100$ (rpm)

Max. load torque $\quad 231.3 \leq 300(\mathrm{~N} \cdot \mathrm{~m})$
Effective value of load torque $\quad 70.7 \leq 100(\mathrm{~N} \cdot \mathrm{~m})$
Regenerative power $\quad 16.23 \leq 40$ (J)
Under these conditions, AX4300T is available.

[Working conditions]	
Table radius	$\mathrm{R}=0.25$ (m)
Table weight	$\mathrm{Wt}=10.6$ (kg)
Radius of jig rotation	$\mathrm{Re}=0.2$ (m)
Jig weight	$\mathrm{Wj}=2$ (kg/piece) (Including the workpiece weight)
Number of jigs	$\mathrm{N}=4$

[Operating conditions]

Travel angle	$: \psi=90\left({ }^{\circ}\right)$
Travel time	$: \mathrm{t}_{1}=0.5(\mathrm{~s})$
Cycle time	$:$ to $=4(\mathrm{~s})$

Cycle time $\quad:$ to $=4(\mathrm{~s})$
Load friction torque : $\mathrm{T}_{\mathrm{F}}=0(\mathrm{~N} \cdot \mathrm{~m})$
Work torque : Tw $=0(\mathrm{~N} \cdot \mathrm{~m})$
Output shaft : TMF ($\mathrm{N} \cdot \mathrm{m}$)
friction torque According to the actuator specifications
Cam curve : MS (modified sine)

STEP 1
Calculaing moment of ineria

STEP 2

Max. rotaition speed
STEP 3
Load torque
a) Table
$\mathrm{J}_{1}=\frac{\mathrm{W}_{\mathrm{t}} \times \mathrm{R}^{2}}{2}=\frac{10.6 \times 0.25^{2}}{2}=0.331$
$\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
b) Jig, workpiece
c) Sum of moment of
(kg $\cdot \mathrm{m}^{2}$)
$\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$ inertia

At first, perform calculation for the smallest model that allows the moment of inertia of load.
The allowed moment of inertia of AX7045X is $0.90\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$, which means that this load is allowed.
Max. load torque

$$
\begin{aligned}
\mathrm{T}_{\mathrm{m}} & =\left[\mathrm{A}_{\mathrm{m}} \cdot(\mathrm{~J}+\mathrm{J} м) \cdot \frac{\psi \cdot \pi}{180 \cdot \mathrm{t}^{2}}+\mathrm{T}_{\mathrm{F}}+\mathrm{Tw}\right] \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{MF}} \\
& =\left[5.53 \times(0.651+0.0254) \times \frac{90 \times \pi}{180 \cdot 0.5^{2}}+0+0\right] \times 1.5+2.5 \\
& =37.8(\mathrm{~N} \cdot \mathrm{~m})
\end{aligned}
$$

Effective value of load torque
$T_{\text {rms }}=\sqrt{\frac{t_{1}}{t_{0}} \cdot\left[r \cdot A_{m} \cdot\left(J+J_{M}\right) \cdot \frac{\psi \cdot \pi}{180 \cdot t_{1}{ }^{2}} \cdot f c\right]^{2}+\left(T_{F} \cdot f c+T_{W} \cdot f c+T_{M F}\right)^{2}}$
$\mathrm{T}_{\mathrm{rms}}=\sqrt{\frac{0.5}{4} \times\left[0.707 \times 5.53 \times 0.6764 \times \frac{90 \times \pi}{180 \cdot 0.5^{2}} \times 1.5\right]^{2}+(0 \times 1.5+0 \times 1.5+2.5)^{2}}$

$$
=9.2(\mathrm{~N} \cdot \mathrm{~m})
$$

$$
\begin{aligned}
E & =\left(\frac{V_{m} \cdot \psi \cdot \pi}{t_{1} \cdot 180}\right)^{2} \cdot \frac{(\mathrm{~J}+\mathrm{JM})}{2}(\mathrm{~J}) \\
& =\left(\frac{1.76 \times 90 \times \pi}{0.5 \times 180}\right)^{2} \times \frac{0.6764}{2}=10.3(\mathrm{~J})
\end{aligned}
$$

$\mathrm{E} \leq 17.2(\mathrm{~J})$

Consider whether the temporarily selected AX7045X is available.
Sum of the moment of inertia of load $\quad 0.651 \leq 0.90\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Max. rotation speed $\quad 52.8 \leq 240$ (rpm)
Max. load torque $\quad 37.8 \leq 45$ ($\mathrm{N} \cdot \mathrm{m}$)
Effective value of load torque $\quad 9.2 \leq 15(\mathrm{~N} \cdot \mathrm{~m})$
Regenerative power $\quad 10.3 \leq 17.2$ (J)
With these conditions, AX7045X is available.

For model selection for "MC2 curve"

What is MC2 curve?

The MC2 curve is a cam curve for which the constant velocity interval can be freely set by setting the acceleration/deceleration time while there is a constant velocity interval during travel, as is the case with an MC (modified constant) curve.
For an MC (generic term: MCV50) curve, the percentage of the constant velocity interval is 50%.
Note: The setting of the acceleration/deceleration time is $1 / 2$ or less of the travel time. When the setting of the acceleration/deceleration time exceeds $1 / 2$ of the travel time, the cam curve is automatically changed to the MS (modified sine) curve.
The example diagram shows the velocity pattern when the percentage of the constant velocity interval is 75% by setting the acceleration/deceleration time (ta) to 0.5 seconds for the 4 seconds of the travel time (t 1).

Selection method

For the MC2 curve, the formula below is used to select a model.

Travel angle	$: \psi\left({ }^{\circ}\right)$
Cycle time	$:$ to (s)
Travel time	$: \mathrm{t}_{1}(\mathrm{~s})$
Acceleration/deceleration time	$:$ ta (s)
Load moment of inertia	$: \mathrm{J}\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Output shaft moment of inertia	$: \mathrm{JM}\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Friction torque	$: \mathrm{Tf}(\mathrm{N} \cdot \mathrm{m})$
Work torque	$: \mathrm{T}_{\mathrm{w}}(\mathrm{N} \cdot \mathrm{m})$
Output shaft friction torque	$: \mathrm{T}_{\mathrm{MF}}(\mathrm{N} \cdot \mathrm{m})$

Max. rotation speed: Nmax (rpm)
$N \max =\frac{\psi}{6\left(\mathrm{t}_{1}-0.863 \mathrm{ta}\right)}$
Load torque (max. value): $\mathrm{Tm}_{\mathrm{m}}(\mathrm{N} \cdot \mathrm{m})$
$\mathrm{Tm}=\left[5.53\left(\mathrm{~J}+\mathrm{J}_{\mathrm{M}}\right) \cdot \frac{\psi \cdot\left(1-\frac{\mathrm{t}_{1}-2 \mathrm{ta}}{\mathrm{t}_{1}-0.863 \mathrm{ta}}\right) \cdot \pi}{720 \cdot \mathrm{ta}^{2}}+\mathrm{Tf}+\mathrm{T}_{\mathrm{w}}\right] \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{MF}}$
Load torque (effective value): Trms (N•m)
Trms $=\sqrt{\frac{2 \mathrm{ta}}{\mathrm{t}_{0}} \cdot\left[3.91(\mathrm{~J}+\mathrm{Jm}) \cdot \frac{\psi \cdot\left(1-\frac{\mathrm{t}_{1}-2 \mathrm{ta}}{\mathrm{t}_{1}-0.863 \mathrm{ta}}\right) \cdot \pi}{720 \cdot \mathrm{ta}^{2}} \cdot \mathrm{fc}\right]^{2}+\left[\left(\mathrm{Tf}+\mathrm{T}_{\mathrm{w}}\right) \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{MF}}\right]^{2}}$

For model selection for "Continuous rotation"

What is continuous rotation?

The continuous rotation has the following functions.

1. Continuous rotation
2. Stop at equal segment position
: Rotation continues at a constant rotation speed until the continuous rotation stop input is input.
With the equal segment specified, the device stops at the equal segment position by a continuous rotation stop input.

The example diagram shows the velocity pattern where the motor is accelerated at the acceleration time: ta up to the set rotation speed: N , and then stopped, by a continuous rotation stop input, at the deceleration time: td.

Selection method

For the continuous rotation, the formula below is used to select a model.
Rotation speed $: \mathrm{N}(\mathrm{rpm})$
Cycle time $\quad:$ to (s)
Acceleration time $\quad:$ ta (s)
Deceleration time $\quad:$ td (s)
Load moment of inertia : J (kg•m ${ }^{2}$)
Output shaft moment of inertia : $\mathrm{JM}_{\mathrm{M}}\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Friction torque : Tf $(\mathrm{N} \cdot \mathrm{m})$
Work torque : $\mathrm{T}_{\mathrm{w}}(\mathrm{N} \cdot \mathrm{m})$
Output shaft friction torque : TMF ($\mathrm{N} \cdot \mathrm{m}$)
Max. rotation speed: Nmax (rpm) (*1)
Nmax $=\mathrm{N}$

Load torque (max. value): Tm ($\mathrm{N} \cdot \mathrm{m}$)
$\mathrm{Tm}=\left[5.53\left(\mathrm{~J}+\mathrm{J}_{M}\right) \cdot \frac{6.82 \mathrm{~N} \cdot \mathrm{ta} \cdot \pi}{720 \cdot \mathrm{ta}^{2}}+\mathrm{Tf}+\mathrm{T}_{\mathrm{w}}\right] \cdot \mathrm{fc}+\mathrm{T}_{\text {MF }}$
Load torque (effective value): Trms ($\mathrm{N} \cdot \mathrm{m}$)
Trms $=\sqrt{\begin{array}{c}\text { ta } \\ \mathrm{t}_{0}\end{array} \cdot\left[3.91\left(\mathrm{~J}+\mathrm{J}_{\mathrm{M}}\right) \cdot \frac{6.82 \mathrm{~N} \cdot \mathrm{ta} \cdot \pi}{720 \cdot \mathrm{ta}^{2}} \cdot \mathrm{fc}\right]^{2}+\left[\left(\mathrm{Tf}+\mathrm{T}_{\mathrm{w}}\right) \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{mF}}\right]^{2}}$
The formula above is applicable when ta $\leq \mathrm{td}$. When ta $>\mathrm{td}$, replace ta with td for perform selection.
*1) At the time of continuous rotation, the maximum rotation speed is limited. Use the device according to the actuator specifications.
(m : Weight of object (kg))

A When rotation center is own shaft

1. Circular plate
(cylinder)

2. Hollow circular plate (hollow cylinder)
3. Cuboid

$$
J=\frac{m\left(R^{2}+r^{2}\right)}{2}
$$

4. Ring

5. Cylinder

$$
J=\frac{m\left(3 R^{2}+I^{2}\right)}{12}
$$

6. Hollow cylinder

$$
J=\frac{m\left(R^{2}+r^{2}+R^{2} / 3\right)}{4}
$$

B When rotation center differs from own shaft

1. Any shape (if sufficiently small)

Center of rotation

2. Circular plate (cylinder)

3. Hollow circular plate
(hollow cylinder)

For conveyor

m_{1} : Chain weight
m_{2} : Workpiece total weight
$J=\left(m_{1}+m_{2}+m_{3}+\frac{m_{4}}{2}\right) \cdot R^{2}$
m_{3} : Jig (pallet) total weight
m_{4} : Sprocket A (drive) + B total weight
R : Drive side sprocket radius

Selection guide

ABSOL	ion guide specifications check shee Table direct drive		(Note) Contact CKD for chain drives and gear drives.
Company name		Your name	
Division			
TEL		FAX	

- Operating conditions

1. Index 2. Oscillator

Movement angle $\psi\left({ }^{\circ}\right)$
Movement time t_{1} (sec.)
Cycle time to (sec.)

(Note) Index time is movement time + settling time.
The settling time differs according to the working condition, but generally is between 0.025 and 0.20 s .

- Other load conditions

Installation position

1. Horizontal (Fig.2) 2. Vertical (Fig.

Extemal job

1. None
2. Available

(Note) Eccentric load caused by gravity from vertical installation, extemal load caused by caulking work
Dial plate support form bottom

| 1. None 2. Available \square
 Coefficient of friction μ \square
 Work radius $\operatorname{Rf}(\mathrm{mm})$ \square |
| :--- | :--- |

Device rigidity

1. High
2. Low (Note)

(Note) When using a spline, when unit cannot be fixed directly onto the device (Fig. 4), when there is a mechanism such as a chuck on the table.

Extension with table shaft

1. None 2.Available (Fig. 5) \qquad
Actuator movement
2. None
3. Available

(Note) When actuator is mounted on X-Y table or vertical mechanism, etc., and mounted actuator moves

(Fig. 4) Installation rigidity: Low
(Note) Attach system outline and reference drawings so that the optimal model can be selected.

[^6]
Safety Precautions

Always read this section before use.

When designing equipment using ABSODEX, the manufacturer is obligated to ensure that the safety of the mechanism and the system that runs by the electrical controls are secured.
It is important to select, use, handle and maintain the product appropriately to ensure that the CKD product is used safely. Observe warnings and precautions to ensure device safety.
Check that device safety is ensured, and manufacture a safe device.

A WARNING

This product is designed and manufactured as a general industrial machine part. It must be handled by an operator having sufficient knowledge and experience.
2 Use the product within specifications range.
This product must be used within its stated specifications. In addition, never modify or additionally machine this product.
This product is intended for use as a device or part for general-purpose industrial machinery. It is not intended for use outdoors or for use under the following conditions or environment.
(Note that this product can be used when CKD is consulted prior to use and the customer consents to CKD product specifications. The customer must provide safety measures to avoid risks in the event of problems.)
(1) Use for applications requiring safety, including nuclear energy, railways, aircraft, marine vessels, vehicles, medical devices, devices or applications in contact with beverages or foodstuffs, amusement devices, emergency operation (cutoff, release, etc.) circuits, press machines, brake circuits, or safety devices or applications.
(2) Use for applications where life or assets could be adversely affected, and special safety measures are required.
3 Observe organization standards and regulations, etc., related to the safety of the device design.
4 Do not remove devices before confirming safety.
(1) Inspect and service the machine and devices after confirming the safety of the system by for instance turning off the nearby devices and connected devices.
(2) Note that there may be hot or charged sections even after operation is stopped. Be careful when handling devices at the time of inspection and servicing.
(3) When inspecting or servicing the device, turn off the device and the power to the facility. Discharge any compressed air from the system, and pay close attention to possible water leakage and leakage of electricity during inspection and servicing.
5 Observe the instructions and cautions of each product to prevent accidents.
(1) When the device is off, do not turn the output shaft of the actuator to a speed exceeding 30 rpm . The power generation of the actuator may damage the driver or may cause electrical shock.
(2) Servo off (including emergency stop and alarm) or brake off with rotational force being applied, e.g. by gravity, may cause the output shaft to rotate due to turning force.
Operate the actuator in the balanced condition so that no rotational force is applied for these operations or after safety is confirmed.
(3) Keep hands away from the output shaft, as sudden motion may take place during gain adjustments or trial run. When operating the actuator from a position in which motion cannot be confirmed, make sure that safety is assured when the output shift is rotated beforehand.
4 The brake built-in actuators do not completely clamp the output shaft in all cases. The built-in brake alone is not enough to secure safety when performing maintenance in applications in which the output axis may rotate due to an unbalanced load, or when the machine is stopped for an extended period of time. Be sure that the equipment is in a balanced state or provide a mechanical locking mechanism.
(5) It may take several seconds to stop in an emergency depending on rotation speed and load.

6 Observe the following precautions to prevent electric shock.
(1) The power terminals on the front side of the driver and the motor cable connection terminals are high voltage parts. For the terminal blocks, make sure to install the attached terminal cover. Do not touch the actuator and the driver while the power supply is on.
Immediately after the power is turned off, high voltage is applied, so also do not touch them for 5 minutes or more, until the electrical charge accumulated in the capacitor inside the driver is released.
(2) For operations with the side cover removed, such as maintenance and inspection or change of the switch inside the driver, make sure to turn off the actuator and release the electrical charge for 5 minutes or more before work; otherwise, an electric shock may occur from the high-voltage device.
(3) Do not attach or remove any connectors with the power supply on. Doing so may cause malfunction, failure, or electric shock.
Before restarting the machine and devices, confirm that measures are taken to prevent the loaded objects from being removed.

8 Install an overcurrent protective device.
The wiring to the driver should be in accordance with JIS B 9960-1:2008 Safety of Machinery - Electrical Equipment of Machines - Part 1: General Requirements. Install an overcurrent protector (a circuit protector or a shutoff mechanism for wiring) for the main power supply, control power supply, and power supply for I/O. (Excerpt from JIS B 9960-1 7.2.1 General matters)
If the circuit current inside the machine (electric apparatus) may exceed the rated value of the components or the allowable current of the conductor, whichever is the smaller, overcurrent protection must be implemented. 7.2.10 defines the rated value or set value that should be selected.
9 Observe the precautions on the following pages to prevent accidents.
The precautions are ranked as "DANGER", "WARNING" and "CAUTION" in this section.
A DANGER: When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries, and when there is a high degree of emergency to a warning.
A WARNING: If handled incorrectly, a dangerous situation may occur, resulting in death or serious injury.
A CAUTION: When a dangerous situation may occur if handling is mistaken leading to minor injuries or physical damage.

Note that some items described as "CAUTION" may lead to serious results depending on the situation. Every item provides important information and must be observed.

Warranty

Terms of warranty

The warranty period and the scope of warranty are described below.

1. Warranty period

The warranty of this product is valid for one (1) year after delivery to the customer's designated site. (However, the period assumes eight hours of operation per day. As well, if the durability limit is reached within one year, the period to the durability limit is the warranty period.)

2. Scope of warranty

If failure is caused in the above warranty period due to poor workmanship of our product, we will repair the product free of charge without delay.
This Limited Warranty will not apply to:
(1) Operation under the conditions or in the environment derailing from those specified in the product specifications.
(2) Failure caused by lack of attention or erroneous control.
(3) Failure resulting from factors other than the delivered product.
(4) Failure caused by improper use of the product.
(5) Failure caused by modification in the structure, performance, specification, or failure caused by repairs done by other than our designated contractor.
(6) Losses which would have been avoided if your machine or equipment to which the ABSODEX product is assembled were provided with general functions, structures or other features common in the industry.
(7) Failure caused by matters that could not be predicted with the technologies in practice when the product was delivered.
(8) Failure caused by fire, earthquake, flood, lightning, or other natural disasters, earth shock, pollution, salt hazard, gas intoxication, excessive voltage, or other external causes.
The warranty covers the actual delivered product, as a single unit, and does not cover any losses induced by failure of the delivered product.

3. Warranty of product exported outside Japan

(1) We will repair products sent back to our factory or a company or factory designated by us. Work and cost necessary for transportation shall not be compensated for.
(2) The repaired product will be packed according to the domestic packing specifications and delivered to a designated site inside Japan.
These are the basic terms of warranty. Priority will be given to specification drawings and specification sheets if the warranty description given on such specification drawings or specification sheets is different from the warranty terms given herein.
4. Compatibility confirmation

The customer is responsible for confirming the compatibility of CKD products with the customer's systems, machines and equipment.

ACAUTION

Design/selection

1 The actuators and drivers are not waterproof. Provide waterproofing when using them where they may come in contact with water or oil.
2 Dust and cuttings gathered on the actuator or driver may cause earth leakage or failure. Check that these do not come in contact with the product.
3 Repeatedly turning power on and off may cause damage to the elements inside the driver.

4
If power is turned off and servomotor turnoff is executed while the servomotor is on (holding), the output shaft may move from the held position even without external force.
5 The optional electromagnetic brake is provided to increase the holding rigidity when stopping the output shaft. Do not use it to brake or stop the rotating output shaft.
6 Actuators and drivers do not guarantee rustproofing. Give careful consideration to storage, installation, and environment.
7 Equipment with ABSODEX products installed should have sufficient rigidity to realize full ABSODEX performance. If the load equipment or frame's mechanical unique vibration is relatively low (approx. 200 to 300 Hz or less depending on the equipment), resonance could occur in the ABSODEX product and load equipment or frame. Secure the rotary table and main unit installation bolts, and ensure sufficient rigidity without loosening, etc. [Fig. 1]
[Fig. 1] Actuator installation

Gain must be adjusted based on load table size, etc. Even when the ABSODEX product is not directly installed, it should be installed on a highly rigid frame. [Fig. 2]

8 When extending the output shaft, refer to the references given in Table 1 for the extended shaft's diameter and length. In addition, add dummy inertia by using Fig. 3 as a reference.
[Table 1] Extended output shaft's diameter guideline

Max. torque $[\mathrm{N} \cdot \mathrm{m}]$	Shaft extension (mm)			TS/TH/XS	
	50	100	200	300	500
6	$\varphi 35$	$\varphi 40$	$\varphi 46$	$\varphi 50$	$\varphi 60$
9,12	$\varphi 40$	$\varphi 46$	$\varphi 55$	$\varphi 60$	$\varphi 70$
18,22	$\varphi 45$	$\varphi 55$	$\varphi 65$	$\varphi 70$	$\varphi 80$
45	$\varphi 55$	$\varphi 65$	$\varphi 75$	$\varphi 85$	$\varphi 95$
75	$\varphi 62$	$\varphi 75$	$\varphi 90$	$\varphi 95$	$\varphi 110$
150	$\varphi 75$	$\varphi 90$	$\varphi 110$	$\varphi 115$	$\varphi 130$
210	$\varphi 80$	$\varphi 95$	$\varphi 115$	$\varphi 125$	$\varphi 140$
300	$\varphi 90$	$\varphi 105$	$\varphi 125$	$\varphi 140$	$\varphi 155$
500	$\varphi 100$	$\varphi 120$	$\varphi 145$	$\varphi 160$	$\varphi 180$
1000	$\varphi 120$	$\varphi 140$	$\varphi 170$	$\varphi 185$	$\varphi 210$

Max. torque $[\mathrm{N} \cdot \mathrm{m}]$	Shaft extension (mm)	
	50	100
1.2	$\varphi 35$	$\varphi 40$
3	$\varphi 35$	$\varphi 40$

Note) The figures in the above table are extended output shaft's diameter references for steel materials (solid shafts).
Contact CKD for references for other materials and hollow shafts.
[Fig. 2] Actuator attachment

ACAUTION

9 If sufficient rigidity cannot be attained, machine resonance is suppressed to some degree by installing dummy inertia as close to the actuator as possible. Examples of adding dummy inertia are shown below.

As a reference, dummy inertia is [load inertia] $\times(0.2$ to 1). [Fig. 3]
[Fig. 3] Dummy inertia installation example 1

When coupling with a belt, gears, or spline, or when joining with a key, dummy inertia should be [load inertia] $\times(0.5$ to 2$)$.
If speed changes with belts or gears, use load inertia as the actuator output shaft conversion value, and install dummy inertia on the actuator. [Fig. 4] [Fig. 5]
(CAUTION) Install dummy inertia as large as possible
within the actuator's capacity. (Use steel that has a large specific gravity.)
[Fig. 4] Dummy inertia installation example 2

[Fig. 5] Dummy inertia installation example 3

10 A resolver (magnetic position detector) is built into the ABSODEX product.
Do not place strong magnetic fields such as rare earth magnets near the actuator. Do not pass highcurrent wiring through the hollow hole. If you do, the full performance may not be achieved, and malfunction or fault may result.

11 We recommend that you install a surge protector if there is a possibility that the device may fail due to lightninginduced surges.

For other precautions, check the materials

 below.1. On the Internet

AX_T Data Download
http://catalog-search.ckd.co.jp/

- Instruction manuals, supplementary explanations

2. Please request the following materials:

ABSODEX AX Series TS/TH/XS Type Technical Data ABSODEX AX Series MU Type Technical Data

ACAUTION

12 Electromagnetic brake connection
AX4000T-EB

1) Do not use the electromagnetic brake to brake or stop the rotating output shaft.
2) Connecting the $B K+$ or $B K$ - of the driver directly with the electromagnetic brake damages the driver.
3) To connect induction loads such as the relay shown below to the external contact, use ones with a rated coil voltage of 24 VDC and a rated current within 100 mA , and take a surge suppression measure.

Recommended circuit for electromagnetic brake

- Operating method

1. Control by the NC program (M68/M69) When the "M68" code is executed, the current is stopped (brake activated) across BK+ and BK-, and when the "M69" code is executed, the current flows (brake released).
2. Control by brake release input (I/O connector, 18 pin) With the brake activated, when brake release is input, the current flows (brake released) across BK+ and BK-.

- When the electromagnetic brake is operated frequently (number times turned on/off), use a solid state relays (SSR) for the external contact.
Recommended model G3NA-D210B DC5-24 (OMRON)
Read the instruction manual of SSR before use.
13 To pass a shaft through the hollow of the model equipped with an electromagnetic brake, use a non-magnetic material (such as SUS303). If a magnetic material (such as S45C) is used, the shaft will be magnetized, causing stuck iron powder on the equipment or giving magnetic effects on peripheral devices.

14 Note that the magnetic force of the electromagnetic brake may cause stuck iron powder or effects on measuring instruments, sensors or other devices.
15 For other precautions, refer to the instruction manual (technical data).

Always read this section before use.

ACAUTION

1 Use the dedicated cable for connecting the driver to the actuator. Changing the length or the material of the dedicated cable may deteriorate or damage the function.
2 Connect the correct power supply. Connecting a nondesignated power supply could cause failure. When reconnecting the power, wait more than 10 seconds after the power is turned off (first confirm that the motor output shaft has stopped).
3 Securely fix the ABSODEX product to the machine and securely install loads such as the table before adjusting gain. Confirm that no interference occurs and the movable parts are in a safe state when are rotated.
4 Do not tap the output shaft with a hammer, or assemble it forcibly. Doing this would prevent the expected accuracy or functions, and could cause failure.
5 Do not place strong magnetic fields such as rare earth magnets near the actuator. It may not be able to maintain expected accuracy.
6 The actuator may become hot depending on operating conditions. Provide a cover so that it will not be touched by accident.
7
The driver surface may become hot depending on operating conditions. Put it inside the switchboard so that it cannot be touched.
8 Do not drill holes into the actuator. Contact CKD when machining is required.
Please do not perform maintenance work on the actuator, the rotary table attached to the actuator or other moving parts.

10 About combining the actuator and driver

- If the actuator and driver are not combined correctly after program input (parameter setting), alarm 3 will be generated. Check the actuator and driver combination. (Note) Alarm 3 occurs to prevent malfunction if the actuator and driver combination differs from when the program was input. Alarm 3 is reset when the program and parameters are input again.
- If operation is started with an incorrect actuator and driver combination after the program input (after parameter setting), malfunction could occur or equipment be damaged.
- When changing the cable length, order the cable separately.
- If a driver other than the compatible driver is connected, the actuator may burnout.
11 When using a circuit breaker, select one that has higher frequency measures for inverter use.
12 The position of the output shaft in the actuator dimension drawing does not indicate the actuator's origin. When using it at the output shaft shown in dimension drawings, the origin must be adjusted by the origin offset function.
13 The cables for the AX4009T, AX2000T, AX6000M Series, and AX7000X Series are not movable cables. Make sure to fix the cable in the connector section to prevent the cable from moving. Do not pull the lead-out cable to lift the unit or do not apply an excessive force to the cable. Otherwise, malfunction, an alarm, damage of the connector part, or disconnection may result.
14 For additional notes and conditions of compatibility with international standards, please refer to the technical data (ABSODEX AX Series TS/TH/XS Type Technical Data, ABSODEX AX Series MU Type Technical Data).
15 When the lead-put cable or connector of the actuator is pulled forcibly, the drawer cable shield braided wire may be exposed.

ACAUTION

During Use \& maintenance

1 Do not pull the cable forcibly, apply excessive force to it, or damage it.
2 Do not overhaul the actuator unit, as original functions may not be restored. In particular, taking apart the rotational position detection unit may cause malfunction or accuracy degradation.
3 When testing the withstand voltage of the machine or equipment incorporating an ABSODEX product, disconnect the main power cable from the ABSODEX driver and check that the voltage is not applied to the driver. Otherwise, failure may occur.
4 If alarm "4" (actuator overload: electronic thermal) is generated, wait for the actuator to sufficiently cool down before restarting.
Alarm "4" could occur in the cases below. Remove the cause before resuming use.

- Resonance or vibration: Ensure sufficient installation rigidity.
- Tact or speed: Increase movement time or stopping time.
- Structure that locks the output shaft: Add M68 and M69
commands.
5 Actuator coordinates are recognized after power is turned on, so check that the output shaft does not move for several seconds after power is turned on.
6 For additional notes and troubleshooting for the alarm display, please refer to the technical data (ABSODEX AX Series TS/TH Type Technical Data, ABSODEX AX Series MU Type Technical Data).

For other precautions, check the materials below.

1. On the Internet
http://catalog-search.ckd.co.jp/

- Instruction manuals, supplementary explanations

2. Please request the following materials: ABSODEX AX Series TS/TH/XS Type Technical Data ABSODEX AX Series MU Type Technical Data

Related products

Electric actuator ERL2/ESD2 Series

\square Selectable motor mounting direction

Left, right, and downward mounting directions added to the conventional straight type

- More controller models

The "Pulse train input" controller was added to the conventional
"7 point positioning" and "63 point positioning"
Easy setting tool
Easy PC setting software (E Tools) added to teaching pendant (ETP2)
\square Fully interchangeable
"Full Interchangeability" enables free combination of actuators and controllers

Electric actuator Motorless

Ball screw drive ETS Series

Motor size: 8 types, lead: 7 types, motor mounting direction: 5 types

- Mount a motor you're familiar with
- Mounting specifications for origin sensor and limit sensor can also be selected
- Stroke length can be selected from 100 to 1500 mm (50 mm pitch)
- Max. load capacity is 150 kg , max. speed is $2000 \mathrm{~mm} / \mathrm{s}$ for support of a wide range of applications

Belt drive ETV Series

- Belt drive based on the ETS Series.
- Stroke lengths of 100 to 3500 mm (50 mm pitch) can be selected; max. speed $2000 \mathrm{~mm} / \mathrm{s}$ and long stroke/high speed are achieved.
- Motor size: 6 types, motor mounting direction: 6 types
- Mount a motor you're familiar with
- Ball screw drive low dust specifications ECS Series
- Based on the ETS Series, low dust generation is achieved by a full cover structure and vacuum port.
- Motor size: 7 types, lead: 7 types, motor mounting direction: 5 types
- Mount a motor you're familiar with
- Mounting specifications for origin sensor and limit sensor can also be selected
- Stroke length can be selected from 100 to 1500 mm (50 mm pitch)
- Max. load capacity is 150 kg , max. speed is $2000 \mathrm{~mm} / \mathrm{s}$ for support of a wide range of applications
Belt drive Low dust specifications ECV Series
- Based on the ETV Series, low dust generation is achieved by a full cover structure and vacuum port.
- Motor size: 6 types, motor mounting direction: 6 types
- Mount a motor you're familiar with

Electric actuator KBX Series
High tact
Max. 2000 mm/s (timing belt drive)
\square High precision
Repeatability: $\pm 0.01 \mathrm{~mm}$ (ball screw drive)
\square All models are absolute types
Long service life lithium batteries (50,000 hour life) are used and all models do not require to return to home position
\square High level processing with a high speed CPU
High level processing is achieved due to a high speed CPU

- Wide variation

8 types of ball screws, 7 types of timing belts
4 directions selectable for each axis for motor mounting position

Catalog No. CC-1219A

Catalog No. CC-1165A, CC-1216A, CC-1217A, CC-1257A

Catalog No. CC-1287A

Electric shuttle mover ESM Series

Single axis two dimension transfer/space saving with only one motor
Two dimension movement is achieved without using multi-axis or a gantry robot. Space can be utilized as desired. Space saving is also possible as desired.
Long stroke, max. 20 m
Features a long stroke that changes conventional ideas of electric actuators. ESM will solve your problems before you even consider using a linear motor.
Multi-point positioning/soft start and stop
Electric actuators are good at multi-point positioning, acceleration and deceleration setting or changing operation speed. This includes the ESM.
\square Compatible with other manufacturers' motors
Mount a motor you're familiar with. Similar to the other motorless series, brackets compatible with other manufacturers' motors are available.

Electric actuator ESSD/ELCR Series

- Space saving

Built-in controller eliminates the need for controller installation space and wiring.
\square Installation similar to a pneumatic cylinder Design resembles a pneumatic cylinder in every way, from appearance to configuration and control.

\square Free motion control

Set speed and acceleration control, positioning completion width (in-position), and choose between three control modes.
\square Easy teaching
Easy setting with five buttons, enabling direct teaching

Catalog No. CC-1259A

Catalog No. CC-1002A

WORLD－NETWORK

：Distributors

CKD Corporation

Website http：／／www．ckd．co．jp／
U．S．A．
CKD USA CORPORATION
CHICAGO HEADQUARTERS
4080 Winnetka Avenue，Rolling Meadows，IL 60008，USA
PHONE＋1－847－368－0539 FAX＋1－847－788－0575
－CINCINNATI OFFICE
－SAN ANTONIO OFFICE
－SAN JOSE OFFICE

Mexico

CKD MEXICO，S．DE R．L．DE C．V．
Cerrada la Noria No． 200 Int．A－01，Querétaro Park II， Parqué Industrial Querétaro，Santa Rosa Jáuregui， Querétaro，C．P．76220，México
PHONE＋52－442－161－0624

Europe

CKD EUROPE B．V
Beechavenue 125A， 1119 RB Schiphol－Rijk，The Netherlands PHONE＋31－23－554－1490
CKD CORPORATION EUROPE BRANCH
SALES HEADQUARTERS
Beechavenue 125A， 1119 RB Schiphol－Rijk，The Netherlands PHONE＋31－23－554－1490
－CZECH OFFICE
－UK OFFIC
Malaysia
M－CKD PRECISION SDN．BHD．
OHEAD OFFICE
Lot No．6，Jalan Modal 23／2，Seksyen 23，Kawasan MIEL
Fasa 8,40300 Shah Alam，Selangor Darul Ehsan，Malaysia PHONE＋60－（0）3－5541－1468 FAX＋60－（0）3－5541－1533
－JOHOR BAHRU BRANCH OFFICE
－PENANG BRANCH OFFICE

Thailand

CKD THAI CORPORATION LTD．
SALES HEADQUARTERS
Suwan Tower，14／1 Soi Saladaeng 1，North Sathorn Road， Kwaeng Silom，Khet Bangrak，Bangkok 10500，Thailand PHONE＋66－（0）2－267－6300 FAX＋66－（0）2－267－6305
－RAYONG OFFICE
－NAVANAKORN OFFICE
EASTERN SEABOARD OFFICE
－LAMPHUN OFFICE
－AMATANAKORN OFFICE
－PRACHINBURI OFFICE
－SARABURI OFFICE
\square 2－250 Ouji，Komaki City，Aichi 485－8551，Japan
\square PHONE＋81－568－74－1338 FAX＋81－568－77－3461

Singapore

CKD SINGAPORE PTE．LTD．
No． 33 Tannery Lane \＃04－01 Hoesteel Industria

CKD CORPORATION BRANCH OFFICE
No． 33 Tannery Lane \＃04－01 Hoesteel Industrial
Building，singaporere 347789，Singapore
Pild
India
CKD INDIA PRIVATE LTD．
Unit No．607，6th Floor，Welldone Tech Park，Sector 48 Sohna Road，Gurgaon－122018，Haryana，India
PHONE＋91－（0）124－418－8212
CKD INDIA PRIVATE LTD．BANGALORE BRANCH No．201／B，2nd Floor，Museum Terraces Apartment，No． 29 Museum Road，Bangalore－560001，Karnataka，India
PHONE＋91－（0）80－4212－7008／7009 FAX＋91－（0）80－4212－7007

Indonesia

PT CKD TRADING INDONESIA
－Sales headauarters
Menara Bidakara 2，18th Floor，JI．Jend．Gatot Subroto Kav 71－73，Pancoran，Jakarta 12870，Indonesia
PHONE＋62－（0）21－2938－6601 FAX＋62－（0）21－2906－9470
－KARAWANG OFFICE
－SURABAYA OFFICE

Vietnam

CKD VIETNAM ENGINEERING CO．，LTD． 18th Floor，CMC Tower，Duy Tan Street，Cau Giay Diste

24－3795－7631 FAX＋84－（0）24－3795－7637

Taiwan

台湾喜開理股份有限公司

TAIWAN CKD CORPORATION
16F－3，No．7，Sec．3，New Taipei Blvd．，Xinzhuang Dist． New Taipel City 242，Taiwan
PHONE＋886－（0）2－8522－8198 FAX＋886－（0）2－8522－8128

- 新竹営業所（HSINCHU OFFICE）
- 台中常営牶所（TAICHUNG OFFICE）

China
喜開理（上海）機器有限公司
CKD（SHANGHAI）CORPORATION
 Room 601，6th Floor，Yuanzhongkeyan Building，No． 1905 Hongmei Road，Xinhui District，Shanghai 200233，China PHONE +86 －（0） $21-61911888$ FAX＋86－（0） 21 －60905356
：舞海䓪事務所斤（WUXI OFFICE）

- 管波事務所（NANGBHO OFFICE）
- 南唯事務所（NANJING OFFICE）
（SUZHOU OFFICE）
（BEIJING OFFICE）
（TIANJIN OFFICE）
（CHANGCHUN OFFICE）
（CHANGCHUN OFFIC
（DALIAN OFFICE）
（QINGDAO OFFICE）
（JINAN OFFICE）
（YANTAI OFFICE）
（SHENYANG OFFICE）
（CHONGQING OFFICE）
（XIAN OFFICE）
（WUHAN OFFICE）
（ZHENGZHOU OFFICE）
（CHANGSHA OFFICE）
（GUANGZHOU OFFICE）
所（EAST SHENZHEN OFFICE）
（DONGGUAN OFFICE）
－夏菛事務所（XIAMEN OFFICE）

Korea

CKD KOREA CORPORATION
HEADQUARTERS
（3rd Floor）， 44 ，Sinsu－ro，Mapo－gu，Seoul 121－856，Korea PHONE＋82－（0）2－783－5201～5203 FAX＋82－（0）2－783－520
水原营業所（SUWON OFFICE）
－蔚山宫業所（ULSAN OFFICE）

The goods and／or their replicas，the technology and／or software found in this catalog are subject to complementary export regulations by Foreign Exchange and Foreign Trade Law of Japan．
If the goods and／or their replicas，the technology and／or software found in this catalog are to be exported，law requires that the exporter makes sure that they will never be used for the development and／or manufacture of weapons for mass destruction．

[^0]: * Custom order products are RoHS non-compliant. Contact CKD as needed

[^1]: ＊Custom order products are RoHS non－compliant．

[^2]: * Safety features (TB1) of this product are not compliant with the certification for safety standards compliance.

[^3]: * Custom order products are CE, UL/cUL, and RoHS non-compliant. Contact CKD as needed.

[^4]: * Custom order products are CE, UL/cUL, and RoHS non-compliant.

[^5]: *1) $\square \square$ represents the cable length

[^6]: - Use conditions, environmental conditions (Optional)

 Actuator ambient temperature (${ }^{\circ} \mathrm{C}$)
 Motor cable length (m)

 Driver ambient temperature (${ }^{\circ} \mathrm{C}$)
 24 VDC power supply cable length (m)
 24 VDC power supply coil diameter (mm^{2})
 24 VDC power supply voltage accuracy (\%)
 24 VDC line point of contact quantity (pc.)
 24 VDC line point of contact resistance ($\mathrm{m} \Omega / \mathrm{pc}$.)

 * You can do a more rigorous selection by filling in this field.
 * With a power supply cable $1.25 \mathrm{~mm}^{2}$ or more, please use one as short (recommended length 1 m or less) as possible.
 * If the output voltage is low in a power supply with voltage adjustment, please adjust it to 24 V and use it.

